China Standard New Condition Automatic Carton Sealing Machine (both belt drive) with Good quality

Product Description

Product Description   
Carton sealer machine is mainly suitable for the sealing and packaging of carton. It can be used in stand-alone operation or in combination with the assembly line. It can be used in single-box operation or matched with carton forming and unpacking machine, packing machine, labeling machine and conveyor. The packaging line is used to make the necessary equipment for the packaging line.

Feature:
1.Vertical storage,cartons can be added at any time without stopping the machine;
2.Suitable for forming and sealing cartons of the same size.
3.Manually adjust to change the carton sizes(finishing in 2-3minutes);
4.Advanced photo electricity induction control system
5.Rationally designed,the forming,folding and sealing process are accomplished simultaneously;
6 Cutter Safety system to prevent hands form stabbed by the cutter
7 Heavy duty built,both steel and stainless steel types.

Main Technical Parameters:New Condition Automatic Carton Sealing Machine(both belt drive)

Model LW-PSM4
Power supply 110/220V, 50/60Hz, 1 Phase
Maximum out of the box size L450 * W400 * H400mm (can be customized)
Minimum out of the box size L200 * W150 * H100mm (can be customized)
Folding box size L200-600 * W200-500 * H150-500mm (can be customized)
Bundle size W800 * H600mm (customizable)
Total power 1.5KW
Need air supply 5-6kg/cm2
Suitable for PP belt 0.5-1.0mm / width 9-15mm
Applicable tape width 48/60/75mm (Choose 1 type)
Machine size L2000×W1900×H1450mm
Machine weight 450kg

Product Show 

After sale:
1. Range experienced senior engineer come to client company for installation .
2. Supply systematic operation training for client workers.
3. Guarantees all equipment (except human factors) within 1 year, lifetime maintenance sevices.
4. After client use the machine for several years, we can provide a detailed refurbishment program, the original equipment and replacement of hardware and software upgrades, extend machine service life for more than 3-4 years.
5. If quality problems arise, the supplier provide technical support and timely supply wearing parts.

Product Detailed 
 
Electrical configuration:

Item Brand
PLC Siemens
Touch screen Siemens
Conveyor belt inverter DANFOSS
Label photoelectric detection SICK
Lack of label photoelectric detection OMRON
Out label photoelectric detection BANNER
Servo motor Panasonic
Contactor Schneider
Electronic control system Schneider

Similar Product
Professional packaging machine for 12 years, mainly engaged in: labeling machine, palletizing machine, sealing machine, unpacking machine and packing machine

>>>>>>View More,Contact Us<<<<<<

Company Profile         

FAQ                                                                                                                                  

Q1: What is your company’s main products?
Palletizer,Conveyor,Case Packer,Sealing machines,Case Erecting machine,Capping Machines,Packing Machines, and Labeling Machines.

Q2: What is delivery date of your products?

Delivery date is 30 working days usually most of the machines.

 

Q3: What is payment term?

Deposit 30% in advance and 70% before shipment the machine.

 

Q4:Are you manufacturer or trading company?

We are manufacture verified by made in china and we have our own design team.

 

Q5:Where are you located?

Is it convenient to visit you? We are located in ZheJiang . Traffic is very convenient.

 

Q6:How can you guarantee quality?

1.We have completed working system and procedures and we follow them very strictly.

2.Our different worker is responsible for different working process, their work is confirmed,and will always operate this process, so very experienced.

3.The electrical pneumatic components are from the world famous companies, such as Germany’s Siemens, Japanese CZPT etc.

4.We will do strict test running after the machine is finished.

5.Our machines are certified by CE,ISO,SGS etc.

 

Q7:Can you design the machine according to our requirements?

Yes. We not only can customize the machine according to your technical drawing, but also can he new machine according to your requirements.

 

Q8:Can you offer overseas technical support?

Yes. We can send engineer to your company to set the machine and train your worker if needed.

 

>>>>>>> For Quotation, Please Consult Us! <<<<<<<<

How to Calculate the Diameter of a Worm Gear

worm shaft
In this article, we will discuss the characteristics of the Duplex, Single-throated, and Undercut worm gears and the analysis of worm shaft deflection. Besides that, we will explore how the diameter of a worm gear is calculated. If you have any doubt about the function of a worm gear, you can refer to the table below. Also, keep in mind that a worm gear has several important parameters which determine its working.

Duplex worm gear

A duplex worm gear set is distinguished by its ability to maintain precise angles and high gear ratios. The backlash of the gearing can be readjusted several times. The axial position of the worm shaft can be determined by adjusting screws on the housing cover. This feature allows for low backlash engagement of the worm tooth pitch with the worm gear. This feature is especially beneficial when backlash is a critical factor when selecting gears.
The standard worm gear shaft requires less lubrication than its dual counterpart. Worm gears are difficult to lubricate because they are sliding rather than rotating. They also have fewer moving parts and fewer points of failure. The disadvantage of a worm gear is that you cannot reverse the direction of power due to friction between the worm and the wheel. Because of this, they are best used in machines that operate at low speeds.
Worm wheels have teeth that form a helix. This helix produces axial thrust forces, depending on the hand of the helix and the direction of rotation. To handle these forces, the worms should be mounted securely using dowel pins, step shafts, and dowel pins. To prevent the worm from shifting, the worm wheel axis must be aligned with the center of the worm wheel’s face width.
The backlash of the CZPT duplex worm gear is adjustable. By shifting the worm axially, the section of the worm with the desired tooth thickness is in contact with the wheel. As a result, the backlash is adjustable. Worm gears are an excellent choice for rotary tables, high-precision reversing applications, and ultra-low-backlash gearboxes. Axial shift backlash is a major advantage of duplex worm gears, and this feature translates into a simple and fast assembly process.
When choosing a gear set, the size and lubrication process will be crucial. If you’re not careful, you might end up with a damaged gear or 1 with improper backlash. Luckily, there are some simple ways to maintain the proper tooth contact and backlash of your worm gears, ensuring long-term reliability and performance. As with any gear set, proper lubrication will ensure your worm gears last for years to come.
worm shaft

Single-throated worm gear

Worm gears mesh by sliding and rolling motions, but sliding contact dominates at high reduction ratios. Worm gears’ efficiency is limited by the friction and heat generated during sliding, so lubrication is necessary to maintain optimal efficiency. The worm and gear are usually made of dissimilar metals, such as phosphor-bronze or hardened steel. MC nylon, a synthetic engineering plastic, is often used for the shaft.
Worm gears are highly efficient in transmission of power and are adaptable to various types of machinery and devices. Their low output speed and high torque make them a popular choice for power transmission. A single-throated worm gear is easy to assemble and lock. A double-throated worm gear requires 2 shafts, 1 for each worm gear. Both styles are efficient in high-torque applications.
Worm gears are widely used in power transmission applications because of their low speed and compact design. A numerical model was developed to calculate the quasi-static load sharing between gears and mating surfaces. The influence coefficient method allows fast computing of the deformation of the gear surface and local contact of the mating surfaces. The resultant analysis shows that a single-throated worm gear can reduce the amount of energy required to drive an electric motor.
In addition to the wear caused by friction, a worm wheel can experience additional wear. Because the worm wheel is softer than the worm, most of the wear occurs on the wheel. In fact, the number of teeth on a worm wheel should not match its thread count. A single-throated worm gear shaft can increase the efficiency of a machine by as much as 35%. In addition, it can lower the cost of running.
A worm gear is used when the diametrical pitch of the worm wheel and worm gear are the same. If the diametrical pitch of both gears is the same, the 2 worms will mesh properly. In addition, the worm wheel and worm will be attached to each other with a set screw. This screw is inserted into the hub and then secured with a locknut.

Undercut worm gear

Undercut worm gears have a cylindrical shaft, and their teeth are shaped in an evolution-like pattern. Worms are made of a hardened cemented metal, 16MnCr5. The number of gear teeth is determined by the pressure angle at the zero gearing correction. The teeth are convex in normal and centre-line sections. The diameter of the worm is determined by the worm’s tangential profile, d1. Undercut worm gears are used when the number of teeth in the cylinder is large, and when the shaft is rigid enough to resist excessive load.
The center-line distance of the worm gears is the distance from the worm centre to the outer diameter. This distance affects the worm’s deflection and its safety. Enter a specific value for the bearing distance. Then, the software proposes a range of suitable solutions based on the number of teeth and the module. The table of solutions contains various options, and the selected variant is transferred to the main calculation.
A pressure-angle-angle-compensated worm can be manufactured using single-pointed lathe tools or end mills. The worm’s diameter and depth are influenced by the cutter used. In addition, the diameter of the grinding wheel determines the profile of the worm. If the worm is cut too deep, it will result in undercutting. Despite the undercutting risk, the design of worm gearing is flexible and allows considerable freedom.
The reduction ratio of a worm gear is massive. With only a little effort, the worm gear can significantly reduce speed and torque. In contrast, conventional gear sets need to make multiple reductions to get the same reduction level. Worm gears also have several disadvantages. Worm gears can’t reverse the direction of power because the friction between the worm and the wheel makes this impossible. The worm gear can’t reverse the direction of power, but the worm moves from 1 direction to another.
The process of undercutting is closely related to the profile of the worm. The worm’s profile will vary depending on the worm diameter, lead angle, and grinding wheel diameter. The worm’s profile will change if the generating process has removed material from the tooth base. A small undercut reduces tooth strength and reduces contact. For smaller gears, a minimum of 14-1/2degPA gears should be used.
worm shaft

Analysis of worm shaft deflection

To analyze the worm shaft deflection, we first derived its maximum deflection value. The deflection is calculated using the Euler-Bernoulli method and Timoshenko shear deformation. Then, we calculated the moment of inertia and the area of the transverse section using CAD software. In our analysis, we used the results of the test to compare the resulting parameters with the theoretical ones.
We can use the resulting centre-line distance and worm gear tooth profiles to calculate the required worm deflection. Using these values, we can use the worm gear deflection analysis to ensure the correct bearing size and worm gear teeth. Once we have these values, we can transfer them to the main calculation. Then, we can calculate the worm deflection and its safety. Then, we enter the values into the appropriate tables, and the resulting solutions are automatically transferred into the main calculation. However, we have to keep in mind that the deflection value will not be considered safe if it is larger than the worm gear’s outer diameter.
We use a four-stage process for investigating worm shaft deflection. We first apply the finite element method to compute the deflection and compare the simulation results with the experimentally tested worm shafts. Finally, we perform parameter studies with 15 worm gear toothings without considering the shaft geometry. This step is the first of 4 stages of the investigation. Once we have calculated the deflection, we can use the simulation results to determine the parameters needed to optimize the design.
Using a calculation system to calculate worm shaft deflection, we can determine the efficiency of worm gears. There are several parameters to optimize gearing efficiency, including material and geometry, and lubricant. In addition, we can reduce the bearing losses, which are caused by bearing failures. We can also identify the supporting method for the worm shafts in the options menu. The theoretical section provides further information.

China Standard New Condition Automatic Carton Sealing Machine (both belt drive)   with Good qualityChina Standard New Condition Automatic Carton Sealing Machine (both belt drive)   with Good quality