China Standard Never Stuck Al-Ti Alloy Drive Hydraulic Torque Wrench Tools for Petrochemical Industry Sales by Manufacturer near me supplier

Product Description

MXTL Series-Drive Torque Wrench

  MXTL Series-Drive Torque Wrench
* With the first induction locking structure, it can automatically realize self-locking and release, cancel the manual release trigger, perfectly solve the problem of bolt backout and jamming.
* It’s available in a choice of colours,In order to improve equipment identification.
* Aviation Al-Ti alloy and integrated design ensure its wide applicability.
* The maximum working pressure is 70MPa.Drive by advanced precision ratchet. The output torque repeat ability up to ±3% .
* The 360º×180º rotating oil connection has no limitation in used space.
* The trigger button can place the 360º fine-tuning reaction arm on any fulcrum.
* Direct push drive shaft make the tightening and dismounting states easy to be switched.
* The Lock drive shaft can be customized according to customer’s requirement.
* Torque from 185Nm to 150000Nm have 12 models for your choice, more complete specifications, more bolt coverage.

 

Product Features:

 

Type Selection Table of MXTL Series-Drive Hydraulic Wrench:
 
Model 1MXTL 3MXTL 5MXTL 10MXTL 15MXTL 20MXTL 25MXTL 35MXTL 45MXTL 50MXTL 95MXTL
Torque 185 436 779 1502 2071 2617 3493 4963 5912 7032 14085
( Nm) 1852 4364 7789 15571 2571 26171 34928 49627 59123 7571 140848
Weight(Kg) 2.7 4.8 8.8 14.5 19 25 37.5 44 63 89 155
L1 138 170 205 238 268 304 331 390 412 418 520
L2 194 251 290 351 390 442 483 558 570 596 758
L3 63 89 102 118 141 146 158 177 188 195 246
H1 50 70 80 102 112 120 138 150 163 166 210
H2 73 102 124 147 171 183 202 219 229 236 307
H3 96 122 147 177 208 226 250 282 288 300 415
H4 140 165 191 222 252 267 291 323 332 366 473
R1 26 34 39 49 56 60 66 77 80 82 115
R2 107 138 156 177 195 240 260 298 303 325 400
Square Drive 3/4′ 1′ 1-1/2′ 1-1/2′ 2-1/2′ 2-1/2′ 2-1/2′ 2-1/2′ 2-1/2′ 3′ 4′

How  to choose torque range:

How to Choose Hydraulic Wrench:

Bolt Pretightening Method:

Company Profile:

Testing Machine:

Packing:

With Aluminum Plastic Tool Box,Protected by Wooden Box. Transport By Truck, By Sea ,By Air or By Train.

FAQ:

1.QAre you the manufacturer or trading company?

A: We are the manufacturer.

2.Q:Where is your factory?

A: It’s located in HangZhou city ZheJiang Province.

3.Q:What are your main products?

A:Hydraulic torque wrench, bolt tensioner, hydraulic pump, air pump and customized products.

4.Q:What is the MOQ?

A:MOQ is 1pc.

5.Q:How can I get the price list?

A:Please send us email with your exact requirements, then you will receive our reply soon.

6.Q:Can I buy your products in our local market?

A:It depends, please contact sales representative to learn more details.

7.Q:How long is the delivery?

A:Usually we have enough stock, it depends on the actual order quantity.

8.Q:How is your package?

A:It’s different for different products. For wrench it’s double packing with Aluminium plastic carton inside and wooden box outside. For others we use wooden box only.

9.Q:What is your payment term?

A:Very flexible, TT, L/C, RMB are also acceptable.

The Benefits of Spline Couplings for Disc Brake Mounting Interfaces

Spline couplings are commonly used for securing disc brake mounting interfaces. Spline couplings are often used in high-performance vehicles, aeronautics, and many other applications. However, the mechanical benefits of splines are not immediately obvious. Listed below are the benefits of spline couplings. We’ll discuss what these advantages mean for you. Read on to discover how these couplings work.

Disc brake mounting interfaces are splined

There are 2 common disc brake mounting interfaces – splined and six-bolt. Splined rotors fit on splined hubs; six-bolt rotors will need an adapter to fit on six-bolt hubs. The six-bolt method is easier to maintain and may be preferred by many cyclists. If you’re thinking of installing a disc brake system, it is important to know how to choose the right splined and center lock interfaces.
splineshaft

Aerospace applications

The splines used for spline coupling in aircraft are highly complex. While some previous researches have addressed the design of splines, few publications have tackled the problem of misaligned spline coupling. Nevertheless, the accurate results we obtained were obtained using dedicated simulation tools, which are not commercially available. Nevertheless, such tools can provide a useful reference for our approach. It would be beneficial if designers could use simple tools for evaluating contact pressure peaks. Our analytical approach makes it possible to find answers to such questions.
The design of a spline coupling for aerospace applications must be accurate to minimize weight and prevent failure mechanisms. In addition to weight reduction, it is necessary to minimize fretting fatigue. The pressure distribution on the spline coupling teeth is a significant factor in determining its fretting fatigue. Therefore, we use analytical and experimental methods to examine the contact pressure distribution in the axial direction of spline couplings.
The teeth of a spline coupling can be categorized by the type of engagement they provide. This study investigates the position of resultant contact forces in the teeth of a spline coupling when applied to pitch diameter. Using FEM models, numerical results are generated for nominal and parallel offset misalignments. The axial tooth profile determines the behavior of the coupling component and its ability to resist wear. Angular misalignment is also a concern, causing misalignment.
In order to assess wear damage of a spline coupling, we must take into consideration the impact of fretting on the components. This wear is caused by relative motion between the teeth that engage them. The misalignment may be caused by vibrations, cyclical tooth deflection, or angular misalignment. The result of this analysis may help designers improve their spline coupling designs and develop improved performance.
CZPT polyimide, an abrasion-resistant polymer, is a popular choice for high-temperature spline couplings. This material reduces friction and wear, provides a low friction surface, and has a low wear rate. Furthermore, it offers up to 50 times the life of metal on metal spline connections. For these reasons, it is important to choose the right material for your spline coupling.
splineshaft

High-performance vehicles

A spline coupler is a device used to connect splined shafts. A typical spline coupler resembles a short pipe with splines on either end. There are 2 basic types of spline coupling: single and dual spline. One type attaches to a drive shaft, while the other attaches to the gearbox. While spline couplings are typically used in racing, they’re also used for performance problems.
The key challenge in spline couplings is to determine the optimal dimension of spline joints. This is difficult because no commercial codes allow the simulation of misaligned joints, which can destroy components. This article presents analytical approaches to estimating contact pressures in spline connections. The results are comparable with numerical approaches but require special codes to accurately model the coupling operation. This research highlights several important issues and aims to make the application of spline couplings in high-performance vehicles easier.
The stiffness of spline assemblies can be calculated using tooth-like structures. Such splines can be incorporated into the spline joint to produce global stiffness for torsional vibration analysis. Bearing reactions are calculated for a certain level of misalignment. This information can be used to design bearing dimensions and correct misalignment. There are 3 types of spline couplings.
Major diameter fit splines are made with tightly controlled outside diameters. This close fit provides concentricity transfer from the male to the female spline. The teeth of the male spline usually have chamfered tips and clearance with fillet radii. These splines are often manufactured from billet steel or aluminum. These materials are renowned for their strength and uniform grain created by the forging process. ANSI and DIN design manuals define classes of fit.
splineshaft

Disc brake mounting interfaces

A spline coupling for disc brake mounting interfaces is a type of hub-to-brake-disc mount. It is a highly durable coupling mechanism that reduces heat transfer from the disc to the axle hub. The mounting arrangement also isolates the axle hub from direct contact with the disc. It is also designed to minimize the amount of vehicle downtime and maintenance required to maintain proper alignment.
Disc brakes typically have substantial metal-to-metal contact with axle hub splines. The discs are held in place on the hub by intermediate inserts. This metal-to-metal contact also aids in the transfer of brake heat from the brake disc to the axle hub. Spline coupling for disc brake mounting interfaces comprises a mounting ring that is either a threaded or non-threaded spline.
During drag brake experiments, perforated friction blocks filled with various additive materials are introduced. The materials included include Cu-based powder metallurgy material, a composite material, and a Mn-Cu damping alloy. The filling material affects the braking interface’s wear behavior and friction-induced vibration characteristics. Different filling materials produce different types of wear debris and have different wear evolutions. They also differ in their surface morphology.
Disc brake couplings are usually made of 2 different types. The plain and HD versions are interchangeable. The plain version is the simplest to install, while the HD version has multiple components. The two-piece couplings are often installed at the same time, but with different mounting interfaces. You should make sure to purchase the appropriate coupling for your vehicle. These interfaces are a vital component of your vehicle and must be installed correctly for proper operation.
Disc brakes use disc-to-hub elements that help locate the forces and displace them to the rim. These elements are typically made of stainless steel, which increases the cost of manufacturing the disc brake mounting interface. Despite their benefits, however, the high braking force loads they endure are hard on the materials. Moreover, excessive heat transferred to the intermediate elements can adversely affect the fatigue life and long-term strength of the brake system.

China Standard Never Stuck Al-Ti Alloy Drive Hydraulic Torque Wrench Tools for Petrochemical Industry Sales by Manufacturer   near me supplier China Standard Never Stuck Al-Ti Alloy Drive Hydraulic Torque Wrench Tools for Petrochemical Industry Sales by Manufacturer   near me supplier