Tag Archives: china stepper motor

China high quality Dk7740z Molybdenum Wire EDM with 4 Stepper Motor Drive with Good quality

Product Description

Technique parameters
cnc wire cut edm

Technique parameters Unit DK7725Z DK7732Z DK7740Z DK7750Z DK7763Z
Table size  (WxD) mm 400×580 440×680 540×760 640×1571 750×1140
Table travel (XxY) mm 250×320 320×400 400×500 500×630 630×800
Table travel (UxV) mm 70×70
Z-axis control   manual control
Z-axis guideway   slide guides
Max. workpiece weight kg 400 600 1000 1600 2400
Thickness of workpiece mm 400 400 450 550
Max.taper angle   ±6°/80mm
Diameter of cutting wire mm φ0.15~φ0.20mm(recommendφ0.18mm)
Feeding speed m/sec 1~11.4m/sec  adjustable
Precision mm ≤0.015
Machining speed mm²/min >200
Surface roughness μm Ra≤2.5
Motor type   X,Y,U,V stepper motor
Control axis   4 axis simultaneous
Min. control pace mm 0.001
Power supply   3N-380V/50Hz
Max. working current A 12
Power consumption Kw 1
Working liquid   JA-1
Water tank L 55
Filtering mode   filter screen
Controller   DQE-DS-01/02/03
Machine weight kg 1100 1300 1600 2300 2700
Machine dimensions mm 1420×1040×1600 1550×1170×1700 1800×1380×1700 2060×1760×1850 2250×2250×1950

1. Optional two-axis or four-axis hybrid stepper motor
2. Two kinds of cabinet optional one
3. Cost-effective
4. Good accuracy and accuracy to maintain the characteristics
5. Excellent long-term fast cutting characteristics
6. Good cutting surface roughness
7.Very low molybdenum wire loss and power consumption
8. Very low wire broken rate

Company Information

Founded in 1958 and developed more than half a century, ZheJiang Xihu (West Lake) Dis.qing CNC Machine Tool CO. Ltd., has now became a forge ahead modern enterprise for production of CNC machine.
 
The R&D, production and marketing are the main component of the company. As shown on the website, the main product of the company covers 5 series, CNC milling machine & vertical machining center, CNC engraving machine, CNC wire cut EDM, Die sinking EDM and Micro hole drilling EDM.
 
The company has always engaged in improving the quality, function and performance of CNC machine in the past several years. It has successfully passed identification of ISO, CE, SGS, TUV & Bureau. “Innovation, development and CZPT situation” makes TOPSCNC enjoy high reputation in this line.
 
TOPSCNC people wish to share success with you in the future!

Our service
1) Quality : We take care of the product quality in order to provide good service to our customers.
2) Warranty: One year after shipment,consumables are not included.
3) The quotation do not include installation and education training fee.
4) Engineers available to overseas repair service.
5) Payment Method: T/T or L/C at sight
6) Delivery time : 18–25 days 
7) Packing : Standard export wooden cases 
8)Port: ZheJiang .

FAQ

Q: Are you trading company or manufacturer ?

A: We are manufacturer.

Q. Could your engineers go to our factory to install the machine and train our workers?

A:Yes, our engineers could go to your factory and assist you.

Q:What is your warranty?

A:One year after shipment ,consumables are not included.

Q: What is your terms of payment ?

A:L/C or T/T before shipment.

Cantact us

Company: ZheJiang Xihu (West Lake) Dis.qing CNC Machine Tool Co. Ltd.
Address: East Suburb Development Zone, HangZhou city, ZheJiang Province, China
 
 
Web: topscnc  

 

Stiffness and Torsional Vibration of Spline-Couplings

In this paper, we describe some basic characteristics of spline-coupling and examine its torsional vibration behavior. We also explore the effect of spline misalignment on rotor-spline coupling. These results will assist in the design of improved spline-coupling systems for various applications. The results are presented in Table 1.
splineshaft

Stiffness of spline-coupling

The stiffness of a spline-coupling is a function of the meshing force between the splines in a rotor-spline coupling system and the static vibration displacement. The meshing force depends on the coupling parameters such as the transmitting torque and the spline thickness. It increases nonlinearly with the spline thickness.
A simplified spline-coupling model can be used to evaluate the load distribution of splines under vibration and transient loads. The axle spline sleeve is displaced a z-direction and a resistance moment T is applied to the outer face of the sleeve. This simple model can satisfy a wide range of engineering requirements but may suffer from complex loading conditions. Its asymmetric clearance may affect its engagement behavior and stress distribution patterns.
The results of the simulations show that the maximum vibration acceleration in both Figures 10 and 22 was 3.03 g/s. This results indicate that a misalignment in the circumferential direction increases the instantaneous impact. Asymmetry in the coupling geometry is also found in the meshing. The right-side spline’s teeth mesh tightly while those on the left side are misaligned.
Considering the spline-coupling geometry, a semi-analytical model is used to compute stiffness. This model is a simplified form of a classical spline-coupling model, with submatrices defining the shape and stiffness of the joint. As the design clearance is a known value, the stiffness of a spline-coupling system can be analyzed using the same formula.
The results of the simulations also show that the spline-coupling system can be modeled using MASTA, a high-level commercial CAE tool for transmission analysis. In this case, the spline segments were modeled as a series of spline segments with variable stiffness, which was calculated based on the initial gap between spline teeth. Then, the spline segments were modelled as a series of splines of increasing stiffness, accounting for different manufacturing variations. The resulting analysis of the spline-coupling geometry is compared to those of the finite-element approach.
Despite the high stiffness of a spline-coupling system, the contact status of the contact surfaces often changes. In addition, spline coupling affects the lateral vibration and deformation of the rotor. However, stiffness nonlinearity is not well studied in splined rotors because of the lack of a fully analytical model.
splineshaft

Characteristics of spline-coupling

The study of spline-coupling involves a number of design factors. These include weight, materials, and performance requirements. Weight is particularly important in the aeronautics field. Weight is often an issue for design engineers because materials have varying dimensional stability, weight, and durability. Additionally, space constraints and other configuration restrictions may require the use of spline-couplings in certain applications.
The main parameters to consider for any spline-coupling design are the maximum principal stress, the maldistribution factor, and the maximum tooth-bearing stress. The magnitude of each of these parameters must be smaller than or equal to the external spline diameter, in order to provide stability. The outer diameter of the spline must be at least 4 inches larger than the inner diameter of the spline.
Once the physical design is validated, the spline coupling knowledge base is created. This model is pre-programmed and stores the design parameter signals, including performance and manufacturing constraints. It then compares the parameter values to the design rule signals, and constructs a geometric representation of the spline coupling. A visual model is created from the input signals, and can be manipulated by changing different parameters and specifications.
The stiffness of a spline joint is another important parameter for determining the spline-coupling stiffness. The stiffness distribution of the spline joint affects the rotor’s lateral vibration and deformation. A finite element method is a useful technique for obtaining lateral stiffness of spline joints. This method involves many mesh refinements and requires a high computational cost.
The diameter of the spline-coupling must be large enough to transmit the torque. A spline with a larger diameter may have greater torque-transmitting capacity because it has a smaller circumference. However, the larger diameter of a spline is thinner than the shaft, and the latter may be more suitable if the torque is spread over a greater number of teeth.
Spline-couplings are classified according to their tooth profile along the axial and radial directions. The radial and axial tooth profiles affect the component’s behavior and wear damage. Splines with a crowned tooth profile are prone to angular misalignment. Typically, these spline-couplings are oversized to ensure durability and safety.

Stiffness of spline-coupling in torsional vibration analysis

This article presents a general framework for the study of torsional vibration caused by the stiffness of spline-couplings in aero-engines. It is based on a previous study on spline-couplings. It is characterized by the following 3 factors: bending stiffness, total flexibility, and tangential stiffness. The first criterion is the equivalent diameter of external and internal splines. Both the spline-coupling stiffness and the displacement of splines are evaluated by using the derivative of the total flexibility.
The stiffness of a spline joint can vary based on the distribution of load along the spline. Variables affecting the stiffness of spline joints include the torque level, tooth indexing errors, and misalignment. To explore the effects of these variables, an analytical formula is developed. The method is applicable for various kinds of spline joints, such as splines with multiple components.
Despite the difficulty of calculating spline-coupling stiffness, it is possible to model the contact between the teeth of the shaft and the hub using an analytical approach. This approach helps in determining key magnitudes of coupling operation such as contact peak pressures, reaction moments, and angular momentum. This approach allows for accurate results for spline-couplings and is suitable for both torsional vibration and structural vibration analysis.
The stiffness of spline-coupling is commonly assumed to be rigid in dynamic models. However, various dynamic phenomena associated with spline joints must be captured in high-fidelity drivetrain models. To accomplish this, a general analytical stiffness formulation is proposed based on a semi-analytical spline load distribution model. The resulting stiffness matrix contains radial and tilting stiffness values as well as torsional stiffness. The analysis is further simplified with the blockwise inversion method.
It is essential to consider the torsional vibration of a power transmission system before selecting the coupling. An accurate analysis of torsional vibration is crucial for coupling safety. This article also discusses case studies of spline shaft wear and torsionally-induced failures. The discussion will conclude with the development of a robust and efficient method to simulate these problems in real-life scenarios.
splineshaft

Effect of spline misalignment on rotor-spline coupling

In this study, the effect of spline misalignment in rotor-spline coupling is investigated. The stability boundary and mechanism of rotor instability are analyzed. We find that the meshing force of a misaligned spline coupling increases nonlinearly with spline thickness. The results demonstrate that the misalignment is responsible for the instability of the rotor-spline coupling system.
An intentional spline misalignment is introduced to achieve an interference fit and zero backlash condition. This leads to uneven load distribution among the spline teeth. A further spline misalignment of 50um can result in rotor-spline coupling failure. The maximum tensile root stress shifted to the left under this condition.
Positive spline misalignment increases the gear mesh misalignment. Conversely, negative spline misalignment has no effect. The right-handed spline misalignment is opposite to the helix hand. The high contact area is moved from the center to the left side. In both cases, gear mesh is misaligned due to deflection and tilting of the gear under load.
This variation of the tooth surface is measured as the change in clearance in the transverse plain. The radial and axial clearance values are the same, while the difference between the 2 is less. In addition to the frictional force, the axial clearance of the splines is the same, which increases the gear mesh misalignment. Hence, the same procedure can be used to determine the frictional force of a rotor-spline coupling.
Gear mesh misalignment influences spline-rotor coupling performance. This misalignment changes the distribution of the gear mesh and alters contact and bending stresses. Therefore, it is essential to understand the effects of misalignment in spline couplings. Using a simplified system of helical gear pair, Hong et al. examined the load distribution along the tooth interface of the spline. This misalignment caused the flank contact pattern to change. The misaligned teeth exhibited deflection under load and developed a tilting moment on the gear.
The effect of spline misalignment in rotor-spline couplings is minimized by using a mechanism that reduces backlash. The mechanism comprises cooperably splined male and female members. One member is formed by 2 coaxially aligned splined segments with end surfaces shaped to engage in sliding relationship. The connecting device applies axial loads to these segments, causing them to rotate relative to 1 another.

China high quality Dk7740z Molybdenum Wire EDM with 4 Stepper Motor Drive   with Good qualityChina high quality Dk7740z Molybdenum Wire EDM with 4 Stepper Motor Drive   with Good quality

China Best Sales Stepper Motor Drive Dosing Pump for Ceramic Vacuum Filter with high quality

Product Description

Dosing Machine

Product Description

1. Constitutes of the dosing equipment
Major components of this equipment: 1. solution tank 2. stirrer 3.liquidometer 4.filter 5.safety valve 6.
dosing dump. 7.bumper 8.ball valve, check valve and stop valve. 9. pressug gege and corresponding pipes.
Explanation: the pumping capacity of diaphragm dosing pump is 5001/h and pressure 0-1.0mp.
motor capacity of diaphragm dosing pump is 0. 75 W with insulation grade of level F; the stirrer is comprisee
of motor and stiring rod with motor capacity of 0.55kW; all inner components of the equipment including
working platform and handrail are all installed on the same carbon steel base plate.

2.Main Characteristics of the Dosing System
1.concentration design, small floor space, simple structure and stable performance; 2. accurate
measurement, convenient regulation, economic and easy installation and maintenance; 3. suction type
installation of the pump, no-blocking, long non-failure operation time and low operating cost;  4. good
corrosion resistance performance and long lifespan; 5. material of the liquor tank: PE, fiberglass, coal steel
rubber liner, 304 stainless steel, 316 stainless steel; 6. material of the stirrer: 304 stainless steel and 31 6 stainless
steel; 7. material of overflowing section of the dosing pump: PP. PVC. PVDE. SS316

3. Applications
It is widely used in raw material of power plant, boiler feed water and oil field surface gathering
dehydration processing system, various petrochemical dosing system and waste water treatment
system, such as adding coagulant, phosphate, ammonia cal liquor, whitewash, corrosion inhibitor
antisludging agent and germicide, algicide agent, etc.

Company Profile

Our Company

ZheJiang Botong Environmental Production Technology Co., Ltd. is engaged in mining machinery production enterprises for many years. Our subsidiary includes Filta(ZheJiang ) Environmental Technology Ltd. Mechanical product development and production of varous types, mainly the production of mineral processing equipment, such as Ceramic Filter, Thickener, Cyclone, Dosing Machine.

The company has aleays been to adhere to the “Build reputation with quality, Expand the market with reputation, seek benifits from the market and seek development with benefits. ” Development concept.

Our company offers variety of products which can meet your multifarious demands. We adhere to the management principles of “quality first, customer first and credit-based” since the establishment of the company and always do our best to satisfy potential needs of our customers. Our company is sincerely willing to cooperate with enterprises from all over the world in order to realize a CZPT situation since the trend of economic globalization has developed with anirresistible force.

After Sales Service

Our Service

1. Our Service:
(1) Select equipment model;
(2) Design and manufacture products according to clients’ special requirement;
(3) Train technical personnel for clients.

2. Serivces during the sale:
(1) Pre-check and accept products ahead of delivery;
(2) Help clients to draft solving plans;
(3) Xihu (West Lake) Dis. clients how to install equipment successfully without problem.

3. After-sale services:
(1) Assist clients to prepare for the first construction scheme;
(2) Install and debug the equipment;
(3) Train the first-line operators on site.

FAQ

FAQ

1.Q:What Information needed to get accurate quotation and proposal?
A:1). What type is the mining? Is it rock stone? or it is sand?
2). If rock stone, what is the general particle size(mm) of the raw ore?
3). What is the handling capacity (tons per hour) you need?
4) .What is the elements of the raw ore? How much percent % of each minerals?

2.Q:Can we send the mineral samples to you to run the ore-dressing experiment test?
A:?Yes, we can run the ore-dressing experiment for our customers. After the test, we will give you the reasonable flowchart, suitable solution and equipment selection. etc. based on the test results.

3.Q:What about warranty of the equipment? Any spare parts supplied?
A:The warranty period of?OASIS?equipment is 12 months. And of course we will supply the spare parts to you for life-long time at lowest cost.

4.Q: Why you choose me?
A:1). Professional manufacturer of supplying mining equipment, Ore beneficiation equipment and mining dryers.
2). Experienced and professional R&D team and manufacturing team.
3). Professional sales team consisted of dedicated, dynamic and innovative staff with international version.
4). Professional logistics service ensuring safety and timely delivery of products all over the world.

Types of Screw Shafts

Screw shafts come in various types and sizes. These types include fully threaded, Lead, and Acme screws. Let’s explore these types in more detail. What type of screw shaft do you need? Which 1 is the best choice for your project? Here are some tips to choose the right screw:

Machined screw shaft

The screw shaft is a basic piece of machinery, but it can be further customized depending on the needs of the customer. Its features include high-precision threads and ridges. Machined screw shafts are generally manufactured using high-precision CNC machines or lathes. The types of screw shafts available vary in shape, size, and material. Different materials are suitable for different applications. This article will provide you with some examples of different types of screw shafts.
Ball screws are used for a variety of applications, including mounting machines, liquid crystal devices, measuring devices, and food and medical equipment. Various shapes are available, including miniature ball screws and nut brackets. They are also available without keyway. These components form a high-accuracy feed mechanism. Machined screw shafts are also available with various types of threaded ends for ease of assembly. The screw shaft is an integral part of linear motion systems.
When you need a machined screw shaft, you need to know the size of the threads. For smaller machine screws, you will need a mating part. For smaller screw sizes, the numbers will be denominated as industry Numeric Sizes. These denominations are not metric, but rather in mm, and they may not have a threads-per-inch designation. Similarly, larger machine screws will usually have threads that have a higher pitch than those with a lower pitch.
Another important feature of machine screws is that they have a thread on the entire shaft, unlike their normal counterparts. These machine screws have finer threads and are intended to be screwed into existing tapped holes using a nut. This means that these screws are generally stronger than other fasteners. They are usually used to hold together electronic components, industrial equipment, and engines. In addition to this, machine screws are usually made of a variety of materials.
screwshaft

Acme screw

An Acme screw is the most common type of threaded shaft available. It is available in a variety of materials including stainless steel and carbon steel. In many applications, it is used for large plates in crushing processes. ACME screws are self-locking and are ideal for applications requiring high clamping force and low friction. They also feature a variety of standard thread forms, including knurling and rolled worms.
Acme screws are available in a wide range of sizes, from 1/8″ to 6″. The diameter is measured from the outside of the screw to the bottom of the thread. The pitch is equal to the lead in a single start screw. The lead is equal to the pitch plus the number of starts. A screw of either type has a standard pitch and a lead. Acme screws are manufactured to be accurate and durable. They are also widely available in a wide range of materials and can be customized to fit your needs.
Another type of Acme screw is the ball screw. These have no back drive and are widely used in many applications. Aside from being lightweight, they are also able to move at faster speeds. A ball screw is similar to an Acme screw, but has a different shape. A ball screw is usually longer than an Acme screw. The ball screw is used for applications that require high linear speeds. An Acme screw is a common choice for many industries.
There are many factors that affect the speed and resolution of linear motion systems. For example, the nut position and the distance the screw travels can all affect the resolution. The total length of travel, the speed, and the duty cycle are all important. The lead size will affect the maximum linear speed and force output. If the screw is long, the greater the lead size, the higher the resolution. If the lead length is short, this may not be the most efficient option.
screwshaft

Lead screw

A lead screw is a threaded mechanical device. A lead screw consists of a cylindrical shaft, which includes a shallow thread portion and a tightly wound spring wire. This spring wire forms smooth, hard-spaced thread convolutions and provides wear-resistant engagement with the nut member. The wire’s leading and trailing ends are anchored to the shaft by means appropriate to the shaft’s composition. The screw is preferably made of stainless steel.
When selecting a lead screw, 1 should first determine its critical speed. The critical speed is the maximum rotations per minute based on the natural frequency of the screw. Excessive backlash will damage the lead screw. The maximum number of revolutions per minute depends on the screw’s minor diameter, length, assembly alignment, and end fixity. Ideally, the critical speed is 80% of its evaluated critical speed. A critical speed is not exceeded because excessive backlash would damage the lead screw and may be detrimental to the screw’s performance.
The PV curve defines the safe operating limits of a lead screw. This relationship describes the inverse relationship between contact surface pressure and sliding velocity. As the PV value increases, a lower rotation speed is required for heavier axial loads. Moreover, PV is affected by material and lubrication conditions. Besides, end fixity, which refers to the way the lead screw is supported, also affects its critical speed. Fixed-fixed and free end fixity are both possible.
Lead screws are widely used in industries and everyday appliances. In fact, they are used in robotics, lifting equipment, and industrial machinery. High-precision lead screws are widely used in the fields of engraving, fluid handling, data storage, and rapid prototyping. Moreover, they are also used in 3D printing and rapid prototyping. Lastly, lead screws are used in a wide range of applications, from measuring to assembly.

Fully threaded screw

A fully threaded screw shaft can be found in many applications. Threading is an important feature of screw systems and components. Screws with threaded shafts are often used to fix pieces of machinery together. Having fully threaded screw shafts ensures that screws can be installed without removing the nut or shaft. There are 2 major types of screw threads: coarse and fine. When it comes to coarse threads, UTS is the most common type, followed by BSP.
In the 1840s, a British engineer named Joseph Whitworth created a design that was widely used for screw threads. This design later became the British Standard Whitworth. This standard was used for screw threads in the United States during the 1840s and 1860s. But as screw threads evolved and international standards were established, this system remained largely unaltered. A new design proposed in 1864 by William Sellers improved upon Whitworth’s screw threads and simplified the pitch and surface finish.
Another reason for using fully threaded screws is their ability to reduce heat. When screw shafts are partially threaded, the bone grows up to the screw shaft and causes the cavity to be too narrow to remove it. Consequently, the screw is not capable of backing out. Therefore, fully threaded screws are the preferred choice for inter-fragmentary compression in children’s fractures. However, surgeons should know the potential complication when removing metalwork.
The full thread depth of a fully threaded screw is the distance at which a male thread can freely thread into the shaft. This dimension is typically 1 millimeter shy of the total depth of the drilled hole. This provides space for tap lead and chips. The full-thread depth also makes fully threaded screws ideal for axially-loaded connections. It is also suitable for retrofitting applications. For example, fully threaded screws are commonly used to connect 2 elements.
screwshaft

Ball screw

The basic static load rating of a ball screw is determined by the product of the maximum axial static load and the safety factor “s0”. This factor is determined by past experience in similar applications and should be selected according to the design requirements of the application. The basic static load rating is a good guideline for selecting a ball screw. There are several advantages to using a ball screw for a particular application. The following are some of the most common factors to consider when selecting a ball screw.
The critical speed limit of a ball screw is dependent on several factors. First of all, the critical speed depends on the mass, length and diameter of the shaft. Second, the deflection of the shaft and the type of end bearings determine the critical speed. Finally, the unsupported length is determined by the distance between the ball nut and end screw, which is also the distance between bearings. Generally, a ball screw with a diameter greater than 1.2 mm has a critical speed limit of 200 rpm.
The first step in manufacturing a high-quality ball screw is the choice of the right steel. While the steel used for manufacturing a ball screw has many advantages, its inherent quality is often compromised by microscopic inclusions. These microscopic inclusions may eventually lead to crack propagation, surface fatigue, and other problems. Fortunately, the technology used in steel production has advanced, making it possible to reduce the inclusion size to a minimum. However, higher-quality steels can be expensive. The best material for a ball screw is vacuum-degassed pure alloy steel.
The lead of a ball screw shaft is also an important factor to consider. The lead is the linear distance between the ball and the screw shaft. The lead can increase the amount of space between the balls and the screws. In turn, the lead increases the speed of a screw. If the lead of a ball screw is increased, it may increase its accuracy. If not, the lead of a ball screw can be improved through preloading, lubrication, and better mounting accuracy.

China Best Sales Stepper Motor Drive Dosing Pump for Ceramic Vacuum Filter   with high qualityChina Best Sales Stepper Motor Drive Dosing Pump for Ceramic Vacuum Filter   with high quality

China high quality Solar Sun Panel Automatic Tracking Gear Reduction Nmrv Worm Gearbox Tracker System Slewing Drive DC Geared Stepper Electrical Motor with Best Sales

Product Description

Solar Sun Panel Automatic Tracking Gear Reduction NMRV Worm Gearbox Tracker System Slewing Drive DC Geared Stepper Electrical Motor

Product Description

Solar tracker motor is also named solar tracking system controlling motor, it is used for solar power generation equipment. The motor has a very low speed, generally, 1~3 rpm which accords with the feature of a DC planetary gear motor. Because the reduction ratio of the planetary gearbox can be very large to achieve very low speed.
The following DC planetary gear motors, stepping planetary gear motors can resist and work well in bad weather conditions with their safe and reliable use, and meet the demands of small and medium automatic tracking systems.

Detailed Photos

 

 

Typical applications

 

 

Product Parameters

 

No

Model

A52R50D24

1

Drive series

4

2

Gearbox Ratio

860.6:1

3

Rated output torque

400 Nm

4

Max torque

320 Nm

5

Rated output speed

1 rpm

6

Rated current (A)

5

7

Rated voltage(v)

24

8

Noise (dB)

≤60

9

Working temperature(ºC)

-40~80

10

IP Grade

IP65

Our Advantages

 

Company Profile

 

FAQ

Q: Can you make the gear motor with customization?
A: Yes, we can customize per your request, like power, voltage, speed, shaft size, wires, connectors, IP grade, etc.

Q: Do you provide samples?
A: Yes. The sample is available for testing.

Q: What is your MOQ?
A: It is 10pcs for the beginning of our business.

Q: What’s your lead time?
A: Standard products need 5-30days, a bit longer for customized products.

Q: Do you provide technical support?
A: Yes. Our company have design and development team, we can provide technical support if you
need.

Q: How to ship to us?
A: It is available by air, or by sea, or by train.

Q: How to pay the money?
A: T/T and L/C are preferred, with a different currency, including USD, EUR, RMB, etc.

Q: How can I know the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.

Q: How shall we contact you?
A: You can send an inquiry directly, and we will respond within 24 hours.

Standard Length Splined Shafts

Standard Length Splined Shafts are made from Mild Steel and are perfect for most repair jobs, custom machinery building, and many other applications. All stock splined shafts are 2-3/4 inches in length, and full splines are available in any length, with additional materials and working lengths available upon request and quotation. CZPT Manufacturing Company is proud to offer these standard length shafts.
splineshaft

Disc brake mounting interfaces that are splined

There are 2 common disc brake mounting interfaces, splined and center lock. Disc brakes with splined interfaces are more common. They are usually easier to install. The center lock system requires a tool to remove the locking ring on the disc hub. Six-bolt rotors are easier to install and require only 6 bolts. The center lock system is commonly used with performance road bikes.
Post mount disc brakes require a post mount adapter, while flat mount disc brakes do not. Post mount adapters are more common and are used for carbon mountain bikes, while flat mount interfaces are becoming the norm on road and gravel bikes. All disc brake adapters are adjustable for rotor size, though. Road bikes usually use 160mm rotors while mountain bikes use rotors that are 180mm or 200mm.
splineshaft

Disc brake mounting interfaces that are helical splined

A helical splined disc brake mounting interface is designed with a splined connection between the hub and brake disc. This splined connection allows for a relatively large amount of radial and rotational displacement between the disc and hub. A loosely splined interface can cause a rattling noise due to the movement of the disc in relation to the hub.
The splines on the brake disc and hub are connected via an air gap. The air gap helps reduce heat conduction from the brake disc to the hub. The present invention addresses problems of noise, heat, and retraction of brake discs at the release of the brake. It also addresses issues with skewing and dragging. If you’re unsure whether this type of mounting interface is right for you, consult your mechanic.
Disc brake mounting interfaces that are helix-splined may be used in conjunction with other components of a wheel. They are particularly useful in disc brake mounting interfaces for hub-to-hub assemblies. The spacer elements, which are preferably located circumferentially, provide substantially the same function no matter how the brake disc rotates. Preferably, 3 spacer elements are located around the brake disc. Each of these spacer elements has equal clearance between the splines of the brake disc and the hub.
Spacer elements 6 include a helical spring portion 6.1 and extensions in tangential directions that terminate in hooks 6.4. These hooks abut against the brake disc 1 in both directions. The helical spring portion 5.1 and 6.1 have stiffness enough to absorb radial impacts. The spacer elements are arranged around the circumference of the intermeshing zone.
A helical splined disc mount includes a stabilizing element formed as a helical spring. The helical spring extends to the disc’s splines and teeth. The ends of the extension extend in opposite directions, while brackets at each end engage with the disc’s splines and teeth. This stabilizing element is positioned axially over the disc’s width.
Helical splined disc brake mounting interfaces are popular in bicycles and road bicycles. They’re a reliable, durable way to mount your brakes. Splines are widely used in aerospace, and have a higher fatigue life and reliability. The interfaces between the splined disc brake and BB spindle are made from aluminum and acetate.
As the splined hub mounts the disc in a helical fashion, the spring wire and disc 2 will be positioned in close contact. As the spring wire contacts the disc, it creates friction forces that are evenly distributed throughout the disc. This allows for a wide range of axial motion. Disc brake mounting interfaces that are helical splined have higher strength and stiffness than their counterparts.
Disc brake mounting interfaces that are helically splined can have a wide range of splined surfaces. The splined surfaces are the most common type of disc brake mounting interfaces. They are typically made of stainless steel or aluminum and can be used for a variety of applications. However, a splined disc mount will not support a disc with an oversized brake caliper.

China high quality Solar Sun Panel Automatic Tracking Gear Reduction Nmrv Worm Gearbox Tracker System Slewing Drive DC Geared Stepper Electrical Motor   with Best SalesChina high quality Solar Sun Panel Automatic Tracking Gear Reduction Nmrv Worm Gearbox Tracker System Slewing Drive DC Geared Stepper Electrical Motor   with Best Sales