Tag Archives: hydraulic cutter machine

China high quality Automatic Rotary Cutter Hydraulic Drive Grinder/Plywood Peeling Knife Grinder Machine near me manufacturer

Product Description

Product Description

Model

FN1400

FN2800

FN2000

 

Max. grinding length(mm)

1500

2800

2000

 

Tilting range of working table

90

90

90

 

Grinding head motor power(kw)

4

4

4

 

Overall dimensions(mm)

3250*1200*1000

4500*1200*1100

4000*1200*1100

 

Weight(kg)

2000

2400

2200

 

Knife grinding method

Electromagnetic

Electromagnetic

Electromagnetic

 

Grinding Accuracy(mm)

0.01

0.01

0.01

Detailed Photos

 

 

Packaging & Shipping

Company Profile

ZheJiang Hummingbird Machinery Co., Ltd., formerly known as HangZhou Xinkun Machinery Co., Ltd., is located in the plywood base of HangZhou City, ZheJiang Province, specializing in the production and research and development of woodworking machinery for more than 10 years. We are a manufacturer of wood working machinery with well-equipped testing facilities and strong technical force. We are the leading manufacturer of woodworking machinery specialized in wood based panel production line for more than 10 years. The main products are plywood assembly line, peeling machine, log cutting machine, hot press, cold press, automatic loading machine, search saw and other plywood machinery and equipment. We offer you qualified products and service with a complete equipment solutions. We can offer you not only a complete equipment solutions to your plan but also good technology service. Engineers available to service machinery overseas and after-sales service provided in our company. 

In 2018, following the development of prefabricated buildings, the company invested in the construction of steel structure factory, with an annual output of 15, 000 tons. There are 2 light steel production lines and 1 heavy steel production line. And with a number of ALC panels manufacturers, committed to the development of prefabricated housing. 

In 2019, Hummingbird Import and Export Trading Co., Ltd. Was established. Based on the principle of integrity and quality, we bring the concept of good mechanical products and prefabricated houses to the world. We also welcome OEM and ODM orders. In line with the concept of service first, we sincerely look forward to cooperating with you, hoping to help you further in your career!

Our Service

Pre-sale service

1.Provide the free consultation of equipment 

2.Provide the standard device and the flow chart
3.According to the clients’ special requirement ,offering the resonable plan and free design to help to select the equipment .
4.Welcome to visit our factory

Service during the sales

1. Inspect the machine before leaving the factory 

2.Oversea install and debug the equipment 
3. Train the first-line operator

After sales service

1) 24 hours online service 

2) Provide the VIDEO with install and debug the equipment
3) Provide technical exchanging

The Benefits of Spline Couplings for Disc Brake Mounting Interfaces

Spline couplings are commonly used for securing disc brake mounting interfaces. Spline couplings are often used in high-performance vehicles, aeronautics, and many other applications. However, the mechanical benefits of splines are not immediately obvious. Listed below are the benefits of spline couplings. We’ll discuss what these advantages mean for you. Read on to discover how these couplings work.

Disc brake mounting interfaces are splined

There are 2 common disc brake mounting interfaces – splined and six-bolt. Splined rotors fit on splined hubs; six-bolt rotors will need an adapter to fit on six-bolt hubs. The six-bolt method is easier to maintain and may be preferred by many cyclists. If you’re thinking of installing a disc brake system, it is important to know how to choose the right splined and center lock interfaces.
splineshaft

Aerospace applications

The splines used for spline coupling in aircraft are highly complex. While some previous researches have addressed the design of splines, few publications have tackled the problem of misaligned spline coupling. Nevertheless, the accurate results we obtained were obtained using dedicated simulation tools, which are not commercially available. Nevertheless, such tools can provide a useful reference for our approach. It would be beneficial if designers could use simple tools for evaluating contact pressure peaks. Our analytical approach makes it possible to find answers to such questions.
The design of a spline coupling for aerospace applications must be accurate to minimize weight and prevent failure mechanisms. In addition to weight reduction, it is necessary to minimize fretting fatigue. The pressure distribution on the spline coupling teeth is a significant factor in determining its fretting fatigue. Therefore, we use analytical and experimental methods to examine the contact pressure distribution in the axial direction of spline couplings.
The teeth of a spline coupling can be categorized by the type of engagement they provide. This study investigates the position of resultant contact forces in the teeth of a spline coupling when applied to pitch diameter. Using FEM models, numerical results are generated for nominal and parallel offset misalignments. The axial tooth profile determines the behavior of the coupling component and its ability to resist wear. Angular misalignment is also a concern, causing misalignment.
In order to assess wear damage of a spline coupling, we must take into consideration the impact of fretting on the components. This wear is caused by relative motion between the teeth that engage them. The misalignment may be caused by vibrations, cyclical tooth deflection, or angular misalignment. The result of this analysis may help designers improve their spline coupling designs and develop improved performance.
CZPT polyimide, an abrasion-resistant polymer, is a popular choice for high-temperature spline couplings. This material reduces friction and wear, provides a low friction surface, and has a low wear rate. Furthermore, it offers up to 50 times the life of metal on metal spline connections. For these reasons, it is important to choose the right material for your spline coupling.
splineshaft

High-performance vehicles

A spline coupler is a device used to connect splined shafts. A typical spline coupler resembles a short pipe with splines on either end. There are 2 basic types of spline coupling: single and dual spline. One type attaches to a drive shaft, while the other attaches to the gearbox. While spline couplings are typically used in racing, they’re also used for performance problems.
The key challenge in spline couplings is to determine the optimal dimension of spline joints. This is difficult because no commercial codes allow the simulation of misaligned joints, which can destroy components. This article presents analytical approaches to estimating contact pressures in spline connections. The results are comparable with numerical approaches but require special codes to accurately model the coupling operation. This research highlights several important issues and aims to make the application of spline couplings in high-performance vehicles easier.
The stiffness of spline assemblies can be calculated using tooth-like structures. Such splines can be incorporated into the spline joint to produce global stiffness for torsional vibration analysis. Bearing reactions are calculated for a certain level of misalignment. This information can be used to design bearing dimensions and correct misalignment. There are 3 types of spline couplings.
Major diameter fit splines are made with tightly controlled outside diameters. This close fit provides concentricity transfer from the male to the female spline. The teeth of the male spline usually have chamfered tips and clearance with fillet radii. These splines are often manufactured from billet steel or aluminum. These materials are renowned for their strength and uniform grain created by the forging process. ANSI and DIN design manuals define classes of fit.
splineshaft

Disc brake mounting interfaces

A spline coupling for disc brake mounting interfaces is a type of hub-to-brake-disc mount. It is a highly durable coupling mechanism that reduces heat transfer from the disc to the axle hub. The mounting arrangement also isolates the axle hub from direct contact with the disc. It is also designed to minimize the amount of vehicle downtime and maintenance required to maintain proper alignment.
Disc brakes typically have substantial metal-to-metal contact with axle hub splines. The discs are held in place on the hub by intermediate inserts. This metal-to-metal contact also aids in the transfer of brake heat from the brake disc to the axle hub. Spline coupling for disc brake mounting interfaces comprises a mounting ring that is either a threaded or non-threaded spline.
During drag brake experiments, perforated friction blocks filled with various additive materials are introduced. The materials included include Cu-based powder metallurgy material, a composite material, and a Mn-Cu damping alloy. The filling material affects the braking interface’s wear behavior and friction-induced vibration characteristics. Different filling materials produce different types of wear debris and have different wear evolutions. They also differ in their surface morphology.
Disc brake couplings are usually made of 2 different types. The plain and HD versions are interchangeable. The plain version is the simplest to install, while the HD version has multiple components. The two-piece couplings are often installed at the same time, but with different mounting interfaces. You should make sure to purchase the appropriate coupling for your vehicle. These interfaces are a vital component of your vehicle and must be installed correctly for proper operation.
Disc brakes use disc-to-hub elements that help locate the forces and displace them to the rim. These elements are typically made of stainless steel, which increases the cost of manufacturing the disc brake mounting interface. Despite their benefits, however, the high braking force loads they endure are hard on the materials. Moreover, excessive heat transferred to the intermediate elements can adversely affect the fatigue life and long-term strength of the brake system.

China high quality Automatic Rotary Cutter Hydraulic Drive Grinder/Plywood Peeling Knife Grinder Machine   near me manufacturer China high quality Automatic Rotary Cutter Hydraulic Drive Grinder/Plywood Peeling Knife Grinder Machine   near me manufacturer

China Standard Hydraulic Drive Rubber Belt Cutting Machine Bale Cutter Guillotine Cutter with Free Design Custom

Product Description

Hydraulic drive rubber belt cutting machine bale cutter guillotine cutter

rubber belt cutting machine Usage:

This rubber belt cutting machine is mainly used to cut the natural rubber,synthetic rubber and other plastic materials,especially it is suitable to be installed near the rubber mixer to cut small pieces of rubber.

 

Features of rubber belt cutting machine

1.This rubber belt cutting machine cutter mainly consists of cutting knife,frame,cylinder,base,auxiliary table,sydraulic system and electric system.

2.The nylon plate is installed on the base under the cutting knife for protecting the edge of the cutting knife.

3.When cutting the raw rubber,put the raw rubber under the cutting knife,the press the start button,the knife can cut the rubber.

5.Two limited switches are installed on the frame to control the reversal valve to change the movement direction of the knife,at the same time,it protects the cover of the cylinder.

 

rubber belt cutting machine Technical Information:

Type XQL-8 XQL-16
Width (mm) 660 1000
Stroke (mm) 680 680
Diameter of the piston (mm) 150 150
Time Taken by the Stroke (second) 16~25 10~16
Power (KW) 5.5 5.5
Overall Dimension (LxWxH) 1900×720×2580 2240×720×2580
Weight (kg) 1500 2000


Company Introduction

 

HangZhou Evertech Industry Co., Ltd. is a professional pressure vessel designer, manufacturer and exporter. We have manufacturing licenses for ASME U, ASME U2,NB,PED, D1, D2 and A2 pressure vessels. Composed of more than 20 senior experts and professional engineers, the research and development team, with more than 20 years of professional experience, is committed to product design, development and program optimization, and can provide high-quality solutions according to users’ requirements in different operating conditions.  Company has cover an area of 70000 manufacturing base and 15000 modern manufacturing plants, can provide customers both at home and abroad with CZPT autoclave, high pressure autoclave, high pressure reactor, AAC autoclave, deaerator, pouring tank pressure vessel products such as more than 800 sets, pressure vessel head more than 20000 sets high quality products and services, won widespread praise.

 

 Our Service 

♦ Our engineers can design target machines for customers and send them the drawing to confirm. We are always on the side of saving your cost.  
♦ In the process of production, we will take photos and send to customers for their track the progress.  
♦ Documents such as packing list, commercial invoice, and bill of lading etc. will be sent after the delivery.  
♦ We could supply free English foundation DWG, installation drawing, user guide, maintenance manual and part drawing.  
♦ We supply overseas engineer service and help to train your workers to operate the machine.

 

Guide to Drive Shafts and U-Joints

If you’re concerned about the performance of your car’s driveshaft, you’re not alone. Many car owners are unaware of the warning signs of a failed driveshaft, but knowing what to look for can help you avoid costly repairs. Here is a brief guide on drive shafts, U-joints and maintenance intervals. Listed below are key points to consider before replacing a vehicle driveshaft.
air-compressor

Symptoms of Driveshaft Failure

Identifying a faulty driveshaft is easy if you’ve ever heard a strange noise from under your car. These sounds are caused by worn U-joints and bearings supporting the drive shaft. When they fail, the drive shafts stop rotating properly, creating a clanking or squeaking sound. When this happens, you may hear noise from the side of the steering wheel or floor.
In addition to noise, a faulty driveshaft can cause your car to swerve in tight corners. It can also lead to suspended bindings that limit overall control. Therefore, you should have these symptoms checked by a mechanic as soon as you notice them. If you notice any of the symptoms above, your next step should be to tow your vehicle to a mechanic. To avoid extra trouble, make sure you’ve taken precautions by checking your car’s oil level.
In addition to these symptoms, you should also look for any noise from the drive shaft. The first thing to look for is the squeak. This was caused by severe damage to the U-joint attached to the drive shaft. In addition to noise, you should also look for rust on the bearing cap seals. In extreme cases, your car can even shudder when accelerating.
Vibration while driving can be an early warning sign of a driveshaft failure. Vibration can be due to worn bushings, stuck sliding yokes, or even springs or bent yokes. Excessive torque can be caused by a worn center bearing or a damaged U-joint. The vehicle may make unusual noises in the chassis system.
If you notice these signs, it’s time to take your car to a mechanic. You should check regularly, especially heavy vehicles. If you’re not sure what’s causing the noise, check your car’s transmission, engine, and rear differential. If you suspect that a driveshaft needs to be replaced, a certified mechanic can replace the driveshaft in your car.
air-compressor

Drive shaft type

Driveshafts are used in many different types of vehicles. These include four-wheel drive, front-engine rear-wheel drive, motorcycles and boats. Each type of drive shaft has its own purpose. Below is an overview of the 3 most common types of drive shafts:
The driveshaft is a circular, elongated shaft that transmits torque from the engine to the wheels. Drive shafts often contain many joints to compensate for changes in length or angle. Some drive shafts also include connecting shafts and internal constant velocity joints. Some also include torsional dampers, spline joints, and even prismatic joints. The most important thing about the driveshaft is that it plays a vital role in transmitting torque from the engine to the wheels.
The drive shaft needs to be both light and strong to move torque. While steel is the most commonly used material for automotive driveshafts, other materials such as aluminum, composites, and carbon fiber are also commonly used. It all depends on the purpose and size of the vehicle. Precision Manufacturing is a good source for OEM products and OEM driveshafts. So when you’re looking for a new driveshaft, keep these factors in mind when buying.
Cardan joints are another common drive shaft. A universal joint, also known as a U-joint, is a flexible coupling that allows 1 shaft to drive the other at an angle. This type of drive shaft allows power to be transmitted while the angle of the other shaft is constantly changing. While a gimbal is a good option, it’s not a perfect solution for all applications.
CZPT, Inc. has state-of-the-art machinery to service all types of drive shafts, from small cars to race cars. They serve a variety of needs, including racing, industry and agriculture. Whether you need a new drive shaft or a simple adjustment, the staff at CZPT can meet all your needs. You’ll be back on the road soon!

U-joint

If your car yoke or u-joint shows signs of wear, it’s time to replace them. The easiest way to replace them is to follow the steps below. Use a large flathead screwdriver to test. If you feel any movement, the U-joint is faulty. Also, inspect the bearing caps for damage or rust. If you can’t find the u-joint wrench, try checking with a flashlight.
When inspecting U-joints, make sure they are properly lubricated and lubricated. If the joint is dry or poorly lubricated, it can quickly fail and cause your car to squeak while driving. Another sign that a joint is about to fail is a sudden, excessive whine. Check your u-joints every year or so to make sure they are in proper working order.
Whether your u-joint is sealed or lubricated will depend on the make and model of your vehicle. When your vehicle is off-road, you need to install lubricable U-joints for durability and longevity. A new driveshaft or derailleur will cost more than a U-joint. Also, if you don’t have a good understanding of how to replace them, you may need to do some transmission work on your vehicle.
When replacing the U-joint on the drive shaft, be sure to choose an OEM replacement whenever possible. While you can easily repair or replace the original head, if the u-joint is not lubricated, you may need to replace it. A damaged gimbal joint can cause problems with your car’s transmission or other critical components. Replacing your car’s U-joint early can ensure its long-term performance.
Another option is to use 2 CV joints on the drive shaft. Using multiple CV joints on the drive shaft helps you in situations where alignment is difficult or operating angles do not match. This type of driveshaft joint is more expensive and complex than a U-joint. The disadvantages of using multiple CV joints are additional length, weight, and reduced operating angle. There are many reasons to use a U-joint on a drive shaft.
air-compressor

maintenance interval

Checking U-joints and slip joints is a critical part of routine maintenance. Most vehicles are equipped with lube fittings on the driveshaft slip joint, which should be checked and lubricated at every oil change. CZPT technicians are well-versed in axles and can easily identify a bad U-joint based on the sound of acceleration or shifting. If not repaired properly, the drive shaft can fall off, requiring expensive repairs.
Oil filters and oil changes are other parts of a vehicle’s mechanical system. To prevent rust, the oil in these parts must be replaced. The same goes for transmission. Your vehicle’s driveshaft should be inspected at least every 60,000 miles. The vehicle’s transmission and clutch should also be checked for wear. Other components that should be checked include PCV valves, oil lines and connections, spark plugs, tire bearings, steering gearboxes and brakes.
If your vehicle has a manual transmission, it is best to have it serviced by CZPT’s East Lexington experts. These services should be performed every 2 to 4 years or every 24,000 miles. For best results, refer to the owner’s manual for recommended maintenance intervals. CZPT technicians are experienced in axles and differentials. Regular maintenance of your drivetrain will keep it in good working order.

China Standard Hydraulic Drive Rubber Belt Cutting Machine Bale Cutter Guillotine Cutter   with Free Design CustomChina Standard Hydraulic Drive Rubber Belt Cutting Machine Bale Cutter Guillotine Cutter   with Free Design Custom

China manufacturer Hydraulic Dredging Cutter Suction Dredger Dredge Equipment Machine Manufacturer Sand Mud in River Port Government Tender Bangladesh Hydraulic /Electric Drive with high quality

Product Description

Hydraulic Dredging Cutter Suction Dredger Dredge Equipment Machine Manufacturer Sand Mud in River Port Government Tender Bangladesh Hydraulic /Electric Drive

1) Products Profile:
Cutter Suction Dredger is self-propelled or non self-propelled, portable cutter dredger. Hull can be dismantled and re-assemble easily with box structure, equipped with horizontal shifting devices, cutter ladder lifting devices, spud devices, deck crane and so on. Widly used in sand-excavaing, river dredging, desiliting , reclamation for channels and land, port construction, etc.

  1. Wide range of use applications
  2. High efficiency, large output, long pump distance, low fuel consumption
  3. Rexroth, CZPT full hydraulic control 
  4. Siemens PLC is easy to operate
  5. Engine choiced from Weichai, Cummins, Caterpillar and more. 
  6. Equipped with Australian Warman technology dredge pump
  7. The modular design enables fast assembly with HID seniors engineers 
  8. Dredger components available in factories to allow short delivery times 
  9. Control the working process of dredging and pumping, delivering dredged materials. lower cost;
  10. Follow manufacture guideline: CCS-ZC standard
  11. CE ISO certificates acquired to prove high quality 
  12. Western Dredge brand parts, easy to find globally 
  13. Can choose reliable Chinese brand parts to lower costs 
  14. Gain access to our sales team, design team, manufacture team 24/7
  15. Lifetime Technical Assistance 

2) Technical specification

(1) Brief Specification of hot selling model:

Model Sand and solid capacity  Max. dredging depth  Discharge distance
HJ 200 160m3/h  8m  800m
HJ 250 200 m3/h  9m  1000m
HJ 300 300 m3/h  10m  1200m
HJ 350 400 m3/h  11m  1500m
HJ 400 500 m3/h  13m  1500m
HJ 450 600 m3/h  14m  1500m
HJ 500 800 m3/h  15m  2000m
HJ 550 900 m3/h  16m  2000m
HJ 600 1100 m3/h  16m  2000m
HJ 650 1200 m3/h  16m  2100m
HJ 700 1400 m3/h  17m  2200m
HJ 800 1500 m3/h  17m  2500m
HJ 300D 500 m3/h  16m  1500m
HJ 400D 825 m3/h  22m  1500m
HJ 500D 1000 m3/h  25m  2000m
HJ 600D 1800 m3/h  25m  2000m
HJ 700D 2250 m3/h  28m  2500m
HJ 800D 2400 m3/h  30m  2500m

(2) Detail specification of model HJ350:

Model HJ350
LOA 30.0m
Hull size (L*B*H) 19.0*7.5*2.0m
Main pontoon (L*B*H) 13.8*3.5*2.0m
Side Pontoon (L*B*H) 19.0*2.0*2.0m
Structure Box-structure
Main engine brand & power Cummins 477kw
Auxiliary engine brand & power Cummins 224kw
Head 45m
Max. dredging depth 11m
water flow 2000m³/h
Solid sand capacity 400m³/h
Discharge Distance 1500m
Draught 1.4m
Total Weight 90T

 All these parameters are just for reference. We can provide the machine according to your different requirements.

3) Dredgers Production in Workshop:

4) Haijie Dredgers Parts:

5) Packing &Shipping:
* Smaller size dredger will be transported by container, and engineers will go to job site to assembly, testing and training.
* Bigger size dredger with diapatchable constructure, will be transported by trailer truck on land and by bulk cargo ship by sea.

6) Aftersale Service:
1.Profestional people serve the technical consult.
2.All the dredgers can be coustomed.
3.We are factory which can provide the higher quality and lower price.
4.Free field Installation,commissioning,training and and free product drawings.
5.Provide professional service and providesolution in a timely manner.
6.Free repair if quality problems happen.
7. Responsible Sales team, design team, manufacture team available 24/7 to best serve clients 
8. Offering spare parts at a discounted price 

7) Company Information:
HangZhou HAIJIE Machinery Equipment Co.,Ltd is a famous manufacter of engineering equipment in China and even in the world,which is mainly engaged in cutter suction  dredger,dredging machine and sand dredging machine.The compony has more than 100employees,with intenal organizatin inteqrity,advanced management methods. 

8) Customer Visiting:

9) FAQ:

Q: Are you trading company or manufacturer ? 
A: We are factory.

Dredger Sand Suction machine for river dredging

Q: I never used this kind of machine, how should i do?

A:Our engineers will CZPT you in the installation and use, and we will offer english manual and CZPT video.
And when our enginner install for you abroad, they will train your staff for free.

Dredger Sand Suction machine for river dredging

Q: Warranty period?

A:We provide 1 year warranty and free repair .We will send you the broken parts in warranty period. Pls feel free to contact me by Email/Skype/Whatsapp 24hours.

Q2, What are the services the Haijie company is providing?
 
A: Free dredger consultation, drawing design, customization, on-site visits, 24/7 availability, free assembly, training, operation testing, and lifetime technical assistance.

10)Feedbacks from Customer:

11)Contact Information:

 If you need further information about our products, please send your message to me in below form. 

Screw Sizes and Their Uses

Screws have different sizes and features. This article will discuss screw sizes and their uses. There are 2 main types: right-handed and left-handed screw shafts. Each screw features a point that drills into the object. Flat tipped screws, on the other hand, need a pre-drilled hole. These screw sizes are determined by the major and minor diameters. To determine which size of screw you need, measure the diameter of the hole and the screw bolt’s thread depth.

The major diameter of a screw shaft

The major diameter of a screw shaft is the distance from the outer edge of the thread on 1 side to the tip of the other. The minor diameter is the inner smooth part of the screw shaft. The major diameter of a screw is typically between 2 and 16 inches. A screw with a pointy tip has a smaller major diameter than 1 without. In addition, a screw with a larger major diameter will have a wider head and drive.
The thread of a screw is usually characterized by its pitch and angle of engagement. The pitch is the angle formed by the helix of a thread, while the crest forms the surface of the thread corresponding to the major diameter of the screw. The pitch angle is the angle between the gear axis and the pitch surface. Screws without self-locking threads have multiple starts, or helical threads.
The pitch is a crucial component of a screw’s threading system. Pitch is the distance from a given thread point to the corresponding point of the next thread on the same shaft. The pitch line is 1 element of pitch diameter. The pitch line, or lead, is a crucial dimension for the thread of a screw, as it controls the amount of thread that will advance during a single turn.
screwshaft

The pitch diameter of a screw shaft

When choosing the appropriate screw, it is important to know its pitch diameter and pitch line. The pitch line designates the distance between adjacent thread sides. The pitch diameter is also known as the mean area of the screw shaft. Both of these dimensions are important when choosing the correct screw. A screw with a pitch of 1/8 will have a mechanical advantage of 6.3. For more information, consult an application engineer at Roton.
The pitch diameter of a screw shaft is measured as the distance between the crest and the root of the thread. Threads that are too long or too short will not fit together in an assembly. To measure pitch, use a measuring tool with a metric scale. If the pitch is too small, it will cause the screw to loosen or get stuck. Increasing the pitch will prevent this problem. As a result, screw diameter is critical.
The pitch diameter of a screw shaft is measured from the crest of 1 thread to the corresponding point on the next thread. Measurement is made from 1 thread to another, which is then measured using the pitch. Alternatively, the pitch diameter can be approximated by averaging the major and minor diameters. In most cases, the pitch diameter of a screw shaft is equal to the difference between the two.

The thread depth of a screw shaft

Often referred to as the major diameter, the thread depth is the outermost diameter of the screw. To measure the thread depth of a screw, use a steel rule, micrometer, or caliper. In general, the first number in the thread designation indicates the major diameter of the thread. If a section of the screw is worn, the thread depth will be smaller, and vice versa. Therefore, it is good practice to measure the section of the screw that receives the least amount of use.
In screw manufacturing, the thread depth is measured from the crest of the screw to the root. The pitch diameter is halfway between the major and minor diameters. The lead diameter represents the amount of linear distance traveled in 1 revolution. As the lead increases, the load capacity decreases. This measurement is primarily used in the construction of screws. However, it should not be used for precision machines. The thread depth of a screw shaft is essential for achieving accurate screw installation.
To measure the thread depth of a screw shaft, the manufacturer must first determine how much material the thread is exposed to. If the thread is exposed to side loads, it can cause the nut to wedge. Because the nut will be side loaded, its thread flanks will contact the nut. The less clearance between the nut and the screw, the lower the clearance between the nut and the screw. However, if the thread is centralized, there is no risk of the nut wedgeing.
screwshaft

The lead of a screw shaft

Pitch and lead are 2 measurements of a screw’s linear distance per turn. They’re often used interchangeably, but their definitions are not the same. The difference between them lies in the axial distance between adjacent threads. For single-start screws, the pitch is equal to the lead, while the lead of a multi-start screw is greater than the pitch. This difference is often referred to as backlash.
There are 2 ways to calculate the pitch and lead of a screw. For single-start screws, the lead and pitch are equal. Multiple-start screws, on the other hand, have multiple starts. The pitch of a multiple-start screw is the same as its lead, but with 2 or more threads running the length of the screw shaft. A square-thread screw is a better choice in applications requiring high load-bearing capacity and minimal friction losses.
The PV curve defines the safe operating limits of lead screw assemblies. It describes the inverse relationship between contact surface pressure and sliding velocity. As the load increases, the lead screw assembly must slow down in order to prevent irreversible damage from frictional heat. Furthermore, a lead screw assembly with a polymer nut must reduce rpm as the load increases. The more speed, the lower the load capacity. But, the PV factor must be below the maximum allowed value of the material used to make the screw shaft.

The thread angle of a screw shaft

The angle between the axes of a thread and the helix of a thread is called the thread angle. A unified thread has a 60-degree angle in all directions. Screws can have either a tapped hole or a captive screw. The screw pitch is measured in millimeters (mm) and is usually equal to the screw major diameter. In most cases, the thread angle will be equal to 60-degrees.
Screws with different angles have various degrees of thread. Originally, this was a problem because of the inconsistency in the threading. However, Sellers’s thread was easier to manufacture and was soon adopted as a standard throughout the United States. The United States government began to adopt this thread standard in the mid-1800s, and several influential corporations in the railroad industry endorsed it. The resulting standard is called the United States Standard thread, and it became part of the ASA’s Vol. 1 publication.
There are 2 types of screw threads: coarse and fine. The latter is easier to tighten and achieves tension at lower torques. On the other hand, the coarse thread is deeper than the fine one, making it easier to apply torque to the screw. The thread angle of a screw shaft will vary from bolt to bolt, but they will both fit in the same screw. This makes it easier to select the correct screw.
screwshaft

The tapped hole (or nut) into which the screw fits

A screw can be re-threaded without having to replace it altogether. The process is different than that of a standard bolt, because it requires threading and tapping. The size of a screw is typically specified by its major and minor diameters, which is the inside distance between threads. The thread pitch, which is the distance between each thread, is also specified. Thread pitch is often expressed in threads per inch.
Screws and bolts have different thread pitches. A coarse thread has fewer threads per inch and a longer distance between threads. It is therefore larger in diameter and longer than the material it is screwed into. A coarse thread is often designated with an “A” or “B” letter. The latter is generally used in smaller-scale metalworking applications. The class of threading is called a “threaded hole” and is designated by a letter.
A tapped hole is often a complication. There is a wide range of variations between the sizes of threaded holes and nut threads, so the tapped hole is a critical dimension in many applications. However, even if you choose a threaded screw that meets the requisite tolerance, there may be a mismatch in the thread pitch. This can prevent the screw from freely rotating.

China manufacturer Hydraulic Dredging Cutter Suction Dredger Dredge Equipment Machine Manufacturer Sand Mud in River Port Government Tender Bangladesh Hydraulic /Electric Drive   with high qualityChina manufacturer Hydraulic Dredging Cutter Suction Dredger Dredge Equipment Machine Manufacturer Sand Mud in River Port Government Tender Bangladesh Hydraulic /Electric Drive   with high quality

China best Automatic Rotary Cutter Hydraulic Drive Grinder/Plywood Peeling Knife Grinder Machine near me manufacturer

Product Description

 

 

 

Electromagnetic Automatic Knife Grinder

Model

YQ-1500

YQ-3000

YQ-3500

Max Grinding Length

1600 mm

3200mm

3600mm

Table Size

1550×180(200)mm

3000×180(200)mm

3550×180(200)mm

Total power

about 6.0kw

about 6.0kw

about 6.0kw

Example Specifications —-  YQ1500 

Max grinding length

1600mm 

Table size

1550×180(200)mm

Grinding wheel size

Φ200*Φ100*Φ32mm

Work voltage

380V / 440V ( can be customized ) 

Grinding wheel reciprocating speed

17m/min

Adjustable angel of work table

±90°

Driving method of grinding head

Transmission

Overall dimension

3850*1300*1300mm

Total power

6kw

Total weight

1800kg

Features

1. This machine mainly grind all type of long knives, like peeling machine knife, Granulator knife,cutting paper knife ,Shearing Blades, sliceing knives etc.
2. This machine can work long surface knife. Max. Working length is 1500mm.
3. This machine’s body is a design of gantry body, with the high-quality steel weld,The body has high strength and good rigidity.
4. The worktable use the electro magnetic chuck. And very convenience to clamp knife. The worktable is easy to adjust the angle by worm gear.
5. This machine use the inverter. It can be easy to adjust the horizontal and vertical speed of the grinding head.
6. Job accuracy of machine is 0.01mm.

 

Why Choose Us:

(1)   lasering your logo on products and designing logo is free 
(2)   Delivery time within 30days 
(3)   No else charge 
(4)   MOQ≥1 
(5)   Provide products quotation 
(6)   Provide Packaging customization service 
(7)   SupportWechat/Email/ / 
(8)   We specializein this field for 25 years 
(9)   Excellent after-sale system 
(10) Supporting visits to factory

Pre-sale service
1) Provide the free consultation of equipment

2) Provide the standard device and the flow chart
3) According to the clients’ special requirement ,offering the resonable plan and free design to help to select the equipment .
4)Welcome to visit our factory
Service during the sales
1) Inspect the machine before leaving the factory

2) Oversea install and debug the equipment
3) Train the first-line operator
After sales service

1) 24 hours online service

2) Provide the VIDEO with install and debug the equipment
3) Provide technical exchanging

FAQ:

 

Q1:Can you customize products for clients?

 A1: Yes We can customize and produce woodworking machines according to the customer’s requirements or drawings.

 

Q2:What about your products quality?

A2:We can provide you samples for quality inspection. If you order, we guarantee the quality is same with sample. In case of quality problem, we can sign agreements and our company will perform the duties.

 

Q3:How can we trust your factory?

A3:We recommend that you come to our factory to see the goods,to verify the real situation of the products, and know more about our factory.

 

Q4:Why does the price often change?

A4:The price depends on the latest prices of the raw materials.

 

Q5:What about the contract signing?

A5: If you’re satisfied with the products and our service, you can sign the contract with us, pay the deposit Then we’ll produce the machines as soon as possible. If you are far away, we can sign the contract by fax. We will ensure the quality of the products and the accessories are complete.

 

Q6: How about delivery?

A: when the product is ready, it can be delivered to you after your full payment. We}ll provide technical guidance.

Screw Sizes and Their Uses

Screws have different sizes and features. This article will discuss screw sizes and their uses. There are 2 main types: right-handed and left-handed screw shafts. Each screw features a point that drills into the object. Flat tipped screws, on the other hand, need a pre-drilled hole. These screw sizes are determined by the major and minor diameters. To determine which size of screw you need, measure the diameter of the hole and the screw bolt’s thread depth.

The major diameter of a screw shaft

The major diameter of a screw shaft is the distance from the outer edge of the thread on 1 side to the tip of the other. The minor diameter is the inner smooth part of the screw shaft. The major diameter of a screw is typically between 2 and 16 inches. A screw with a pointy tip has a smaller major diameter than 1 without. In addition, a screw with a larger major diameter will have a wider head and drive.
The thread of a screw is usually characterized by its pitch and angle of engagement. The pitch is the angle formed by the helix of a thread, while the crest forms the surface of the thread corresponding to the major diameter of the screw. The pitch angle is the angle between the gear axis and the pitch surface. Screws without self-locking threads have multiple starts, or helical threads.
The pitch is a crucial component of a screw’s threading system. Pitch is the distance from a given thread point to the corresponding point of the next thread on the same shaft. The pitch line is 1 element of pitch diameter. The pitch line, or lead, is a crucial dimension for the thread of a screw, as it controls the amount of thread that will advance during a single turn.
screwshaft

The pitch diameter of a screw shaft

When choosing the appropriate screw, it is important to know its pitch diameter and pitch line. The pitch line designates the distance between adjacent thread sides. The pitch diameter is also known as the mean area of the screw shaft. Both of these dimensions are important when choosing the correct screw. A screw with a pitch of 1/8 will have a mechanical advantage of 6.3. For more information, consult an application engineer at Roton.
The pitch diameter of a screw shaft is measured as the distance between the crest and the root of the thread. Threads that are too long or too short will not fit together in an assembly. To measure pitch, use a measuring tool with a metric scale. If the pitch is too small, it will cause the screw to loosen or get stuck. Increasing the pitch will prevent this problem. As a result, screw diameter is critical.
The pitch diameter of a screw shaft is measured from the crest of 1 thread to the corresponding point on the next thread. Measurement is made from 1 thread to another, which is then measured using the pitch. Alternatively, the pitch diameter can be approximated by averaging the major and minor diameters. In most cases, the pitch diameter of a screw shaft is equal to the difference between the two.

The thread depth of a screw shaft

Often referred to as the major diameter, the thread depth is the outermost diameter of the screw. To measure the thread depth of a screw, use a steel rule, micrometer, or caliper. In general, the first number in the thread designation indicates the major diameter of the thread. If a section of the screw is worn, the thread depth will be smaller, and vice versa. Therefore, it is good practice to measure the section of the screw that receives the least amount of use.
In screw manufacturing, the thread depth is measured from the crest of the screw to the root. The pitch diameter is halfway between the major and minor diameters. The lead diameter represents the amount of linear distance traveled in 1 revolution. As the lead increases, the load capacity decreases. This measurement is primarily used in the construction of screws. However, it should not be used for precision machines. The thread depth of a screw shaft is essential for achieving accurate screw installation.
To measure the thread depth of a screw shaft, the manufacturer must first determine how much material the thread is exposed to. If the thread is exposed to side loads, it can cause the nut to wedge. Because the nut will be side loaded, its thread flanks will contact the nut. The less clearance between the nut and the screw, the lower the clearance between the nut and the screw. However, if the thread is centralized, there is no risk of the nut wedgeing.
screwshaft

The lead of a screw shaft

Pitch and lead are 2 measurements of a screw’s linear distance per turn. They’re often used interchangeably, but their definitions are not the same. The difference between them lies in the axial distance between adjacent threads. For single-start screws, the pitch is equal to the lead, while the lead of a multi-start screw is greater than the pitch. This difference is often referred to as backlash.
There are 2 ways to calculate the pitch and lead of a screw. For single-start screws, the lead and pitch are equal. Multiple-start screws, on the other hand, have multiple starts. The pitch of a multiple-start screw is the same as its lead, but with 2 or more threads running the length of the screw shaft. A square-thread screw is a better choice in applications requiring high load-bearing capacity and minimal friction losses.
The PV curve defines the safe operating limits of lead screw assemblies. It describes the inverse relationship between contact surface pressure and sliding velocity. As the load increases, the lead screw assembly must slow down in order to prevent irreversible damage from frictional heat. Furthermore, a lead screw assembly with a polymer nut must reduce rpm as the load increases. The more speed, the lower the load capacity. But, the PV factor must be below the maximum allowed value of the material used to make the screw shaft.

The thread angle of a screw shaft

The angle between the axes of a thread and the helix of a thread is called the thread angle. A unified thread has a 60-degree angle in all directions. Screws can have either a tapped hole or a captive screw. The screw pitch is measured in millimeters (mm) and is usually equal to the screw major diameter. In most cases, the thread angle will be equal to 60-degrees.
Screws with different angles have various degrees of thread. Originally, this was a problem because of the inconsistency in the threading. However, Sellers’s thread was easier to manufacture and was soon adopted as a standard throughout the United States. The United States government began to adopt this thread standard in the mid-1800s, and several influential corporations in the railroad industry endorsed it. The resulting standard is called the United States Standard thread, and it became part of the ASA’s Vol. 1 publication.
There are 2 types of screw threads: coarse and fine. The latter is easier to tighten and achieves tension at lower torques. On the other hand, the coarse thread is deeper than the fine one, making it easier to apply torque to the screw. The thread angle of a screw shaft will vary from bolt to bolt, but they will both fit in the same screw. This makes it easier to select the correct screw.
screwshaft

The tapped hole (or nut) into which the screw fits

A screw can be re-threaded without having to replace it altogether. The process is different than that of a standard bolt, because it requires threading and tapping. The size of a screw is typically specified by its major and minor diameters, which is the inside distance between threads. The thread pitch, which is the distance between each thread, is also specified. Thread pitch is often expressed in threads per inch.
Screws and bolts have different thread pitches. A coarse thread has fewer threads per inch and a longer distance between threads. It is therefore larger in diameter and longer than the material it is screwed into. A coarse thread is often designated with an “A” or “B” letter. The latter is generally used in smaller-scale metalworking applications. The class of threading is called a “threaded hole” and is designated by a letter.
A tapped hole is often a complication. There is a wide range of variations between the sizes of threaded holes and nut threads, so the tapped hole is a critical dimension in many applications. However, even if you choose a threaded screw that meets the requisite tolerance, there may be a mismatch in the thread pitch. This can prevent the screw from freely rotating.

China best Automatic Rotary Cutter Hydraulic Drive Grinder/Plywood Peeling Knife Grinder Machine   near me manufacturer China best Automatic Rotary Cutter Hydraulic Drive Grinder/Plywood Peeling Knife Grinder Machine   near me manufacturer