Tag Archives: hydraulic drive

China supplier 45mxtl Never Stuck Al-Ti Alloy Drive Hydraulic Torque Wrench Made in China wholesaler

Product Description

MXTL Series-Drive Torque Wrench

  MXTL Series-Drive Torque Wrench
* With the first induction locking structure, it can automatically realize self-locking and release, cancel the manual release trigger, perfectly solve the problem of bolt backout and jamming.
* Electroless nickel plating, laser cladding process, strengthen the strength of the cylinder, extend the life.
* Aviation Al-Ti alloy and integrated design ensure its wide applicability.
* The maximum working pressure is 70MPa.Drive by advanced precision ratchet. The output torque repeat ability up to ±3% .
* The 360º×180º rotating oil connection has no limitation in used space.
* The trigger button can place the 360º fine-tuning reaction arm on any fulcrum.
* Direct push drive shaft make the tightening and dismounting states easy to be switched.
* The Lock drive shaft can be customized according to customer’s requirement.
* Torque from 185Nm to 150000Nm have 12 models for your choice, more complete specifications, more bolt coverage.

 

Product Features:

 

Type Selection Table of MXTL Series-Drive Hydraulic Wrench:
 
Model 1MXTL 3MXTL 5MXTL 10MXTL 15MXTL 20MXTL 25MXTL 35MXTL 45MXTL 50MXTL 95MXTL
Torque 185 436 779 1502 2071 2617 3493 4963 5912 7032 14085
( Nm) 1852 4364 7789 15571 2571 26171 34928 49627 59123 7571 140848
Weight(Kg) 2.7 4.8 8.8 14.5 19 25 37.5 44 63 89 155
L1 138 170 205 238 268 304 331 390 412 418 520
L2 194 251 290 351 390 442 483 558 570 596 758
L3 63 89 102 118 141 146 158 177 188 195 246
H1 50 70 80 102 112 120 138 150 163 166 210
H2 73 102 124 147 171 183 202 219 229 236 307
H3 96 122 147 177 208 226 250 282 288 300 415
H4 140 165 191 222 252 267 291 323 332 366 473
R1 26 34 39 49 56 60 66 77 80 82 115
R2 107 138 156 177 195 240 260 298 303 325 400
Square Drive 3/4′ 1′ 1-1/2′ 1-1/2′ 2-1/2′ 2-1/2′ 2-1/2′ 2-1/2′ 2-1/2′ 3′ 4′

How  to choose torque range:

How to Choose Hydraulic Wrench:

Bolt Pretightening Method:

Company Profile:

Testing Machine:

Packing:

With Aluminum Plastic Tool Box,Protected by Wooden Box. Transport By Truck, By Sea ,By Air or By Train.

FAQ:

1.QAre you the manufacturer or trading company?

A: We are the manufacturer.

2.Q:Where is your factory?

A: It’s located in HangZhou city ZheJiang Province.

3.Q:What are your main products?

A:Hydraulic torque wrench, bolt tensioner, hydraulic pump, air pump and customized products.

4.Q:What is the MOQ?

A:MOQ is 1pc.

5.Q:How can I get the price list?

A:Please send us email with your exact requirements, then you will receive our reply soon.

6.Q:Can I buy your products in our local market?

A:It depends, please contact sales representative to learn more details.

7.Q:How long is the delivery?

A:Usually we have enough stock, it depends on the actual order quantity.

8.Q:How is your package?

A:It’s different for different products. For wrench it’s double packing with Aluminium plastic carton inside and wooden box outside. For others we use wooden box only.

9.Q:What is your payment term?

A:Very flexible, TT, L/C, RMB are also acceptable.

Driveshaft structure and vibrations associated with it

The structure of the drive shaft is critical to its efficiency and reliability. Drive shafts typically contain claw couplings, rag joints and universal joints. Other drive shafts have prismatic or splined joints. Learn about the different types of drive shafts and how they work. If you want to know the vibrations associated with them, read on. But first, let’s define what a driveshaft is.
air-compressor

transmission shaft

As the demand on our vehicles continues to increase, so does the demand on our drive systems. Higher CO2 emission standards and stricter emission standards increase the stress on the drive system while improving comfort and shortening the turning radius. These and other negative effects can place significant stress and wear on components, which can lead to driveshaft failure and increase vehicle safety risks. Therefore, the drive shaft must be inspected and replaced regularly.
Depending on your model, you may only need to replace 1 driveshaft. However, the cost to replace both driveshafts ranges from $650 to $1850. Additionally, you may incur labor costs ranging from $140 to $250. The labor price will depend on your car model and its drivetrain type. In general, however, the cost of replacing a driveshaft ranges from $470 to $1850.
Regionally, the automotive driveshaft market can be divided into 4 major markets: North America, Europe, Asia Pacific, and Rest of the World. North America is expected to dominate the market, while Europe and Asia Pacific are expected to grow the fastest. Furthermore, the market is expected to grow at the highest rate in the future, driven by economic growth in the Asia Pacific region. Furthermore, most of the vehicles sold globally are produced in these regions.
The most important feature of the driveshaft is to transfer the power of the engine to useful work. Drive shafts are also known as propeller shafts and cardan shafts. In a vehicle, a propshaft transfers torque from the engine, transmission, and differential to the front or rear wheels, or both. Due to the complexity of driveshaft assemblies, they are critical to vehicle safety. In addition to transmitting torque from the engine, they must also compensate for deflection, angular changes and length changes.

type

Different types of drive shafts include helical shafts, gear shafts, worm shafts, planetary shafts and synchronous shafts. Radial protruding pins on the head provide a rotationally secure connection. At least 1 bearing has a groove extending along its circumferential length that allows the pin to pass through the bearing. There can also be 2 flanges on each end of the shaft. Depending on the application, the shaft can be installed in the most convenient location to function.
Propeller shafts are usually made of high-quality steel with high specific strength and modulus. However, they can also be made from advanced composite materials such as carbon fiber, Kevlar and fiberglass. Another type of propeller shaft is made of thermoplastic polyamide, which is stiff and has a high strength-to-weight ratio. Both drive shafts and screw shafts are used to drive cars, ships and motorcycles.
Sliding and tubular yokes are common components of drive shafts. By design, their angles must be equal or intersect to provide the correct angle of operation. Unless the working angles are equal, the shaft vibrates twice per revolution, causing torsional vibrations. The best way to avoid this is to make sure the 2 yokes are properly aligned. Crucially, these components have the same working angle to ensure smooth power flow.
The type of drive shaft varies according to the type of motor. Some are geared, while others are non-geared. In some cases, the drive shaft is fixed and the motor can rotate and steer. Alternatively, a flexible shaft can be used to control the speed and direction of the drive. In some applications where linear power transmission is not possible, flexible shafts are a useful option. For example, flexible shafts can be used in portable devices.
air-compressor

put up

The construction of the drive shaft has many advantages over bare metal. A shaft that is flexible in multiple directions is easier to maintain than a shaft that is rigid in other directions. The shaft body and coupling flange can be made of different materials, and the flange can be made of a different material than the main shaft body. For example, the coupling flange can be made of steel. The main shaft body is preferably flared on at least 1 end, and the at least 1 coupling flange includes a first generally frustoconical projection extending into the flared end of the main shaft body.
The normal stiffness of fiber-based shafts is achieved by the orientation of parallel fibers along the length of the shaft. However, the bending stiffness of this shaft is reduced due to the change in fiber orientation. Since the fibers continue to travel in the same direction from the first end to the second end, the reinforcement that increases the torsional stiffness of the shaft is not affected. In contrast, a fiber-based shaft is also flexible because it uses ribs that are approximately 90 degrees from the centerline of the shaft.
In addition to the helical ribs, the drive shaft 100 may also contain reinforcing elements. These reinforcing elements maintain the structural integrity of the shaft. These reinforcing elements are called helical ribs. They have ribs on both the outer and inner surfaces. This is to prevent shaft breakage. These elements can also be shaped to be flexible enough to accommodate some of the forces generated by the drive. Shafts can be designed using these methods and made into worm-like drive shafts.

vibration

The most common cause of drive shaft vibration is improper installation. There are 5 common types of driveshaft vibration, each related to installation parameters. To prevent this from happening, you should understand what causes these vibrations and how to fix them. The most common types of vibration are listed below. This article describes some common drive shaft vibration solutions. It may also be beneficial to consider the advice of a professional vibration technician for drive shaft vibration control.
If you’re not sure if the problem is the driveshaft or the engine, try turning on the stereo. Thicker carpet kits can also mask vibrations. Nonetheless, you should contact an expert as soon as possible. If vibration persists after vibration-related repairs, the driveshaft needs to be replaced. If the driveshaft is still under warranty, you can repair it yourself.
CV joints are the most common cause of third-order driveshaft vibration. If they are binding or fail, they need to be replaced. Alternatively, your CV joints may just be misaligned. If it is loose, you can check the CV connector. Another common cause of drive shaft vibration is improper assembly. Improper alignment of the yokes on both ends of the shaft can cause them to vibrate.
Incorrect trim height can also cause driveshaft vibration. Correct trim height is necessary to prevent drive shaft wobble. Whether your vehicle is new or old, you can perform some basic fixes to minimize problems. One of these solutions involves balancing the drive shaft. First, use the hose clamps to attach the weights to it. Next, attach an ounce of weight to it and spin it. By doing this, you minimize the frequency of vibration.
air-compressor

cost

The global driveshaft market is expected to exceed (xxx) million USD by 2028, growing at a compound annual growth rate (CAGR) of XX%. Its soaring growth can be attributed to several factors, including increasing urbanization and R&D investments by leading market players. The report also includes an in-depth analysis of key market trends and their impact on the industry. Additionally, the report provides a comprehensive regional analysis of the Driveshaft Market.
The cost of replacing the drive shaft depends on the type of repair required and the cause of the failure. Typical repair costs range from $300 to $750. Rear-wheel drive cars usually cost more. But front-wheel drive vehicles cost less than four-wheel drive vehicles. You may also choose to try repairing the driveshaft yourself. However, it is important to do your research and make sure you have the necessary tools and equipment to perform the job properly.
The report also covers the competitive landscape of the Drive Shafts market. It includes graphical representations, detailed statistics, management policies, and governance components. Additionally, it includes a detailed cost analysis. Additionally, the report presents views on the COVID-19 market and future trends. The report also provides valuable information to help you decide how to compete in your industry. When you buy a report like this, you are adding credibility to your work.
A quality driveshaft can improve your game by ensuring distance from the tee and improving responsiveness. The new material in the shaft construction is lighter, stronger and more responsive than ever before, so it is becoming a key part of the driver. And there are a variety of options to suit any budget. The main factor to consider when buying a shaft is its quality. However, it’s important to note that quality doesn’t come cheap and you should always choose an axle based on what your budget can handle.

China supplier 45mxtl Never Stuck Al-Ti Alloy Drive Hydraulic Torque Wrench Made in China   wholesaler China supplier 45mxtl Never Stuck Al-Ti Alloy Drive Hydraulic Torque Wrench Made in China   wholesaler

China Good quality Diesel Hydraulic or Electric Drive with Corresponding Gearboxes Diverse and Reliable Dredging Vessel Winches near me supplier

Product Description

Marine winch OEM for boat industrial marine winches

 

Relong hydraulic winch has its own valve group, so that it makes the hydraulic system more simple and increases the stability of the transmission device. The hydraulic valve group of Relong winch solves the problem of empty hook vibrating and falling again during hoisting. So winch can lift and put down stably. When starting and working, CZPT winch is high efficiency, low energy consumption, low noise, and beautiful form. hydraulic winch can be used on the following applications: Traction equipment of gravity crushing Pedrail crane and ship crane Automobile crane Pipe hoist machine Grab bucket Drilling machine with crushing function.

 

Features

1. Last for long as it is very durable. With proper care and maintenance such as replacing worn-out parts, a hydraulic winch will serve you for a very long time.
2. It has the capacity to operate very heavy loads especially for those that an electric winch does not have the capacity for.
3. They also work continuously as long as the engine is running. We usually advise electric winches to be used for smaller projects, as without an electric supply, they will not function.
4. For hydraulic winches, can work for long periods of time as long as the engine is working. Especially during ship launching and vessel upgrading projects, when the CZPT situation plays a role in the project operation, the winch may be required to perform consistently at longer periods of time

Application

All products

Quality Control

Company Overview

RELONG TECHNOLOGY CO, LTD is a high-tech enterprise focusing on designing, manufacturing assembly, and operation management of environmental protection projects and machinery with more than 20 years of experience.

Our main product is an automatic aquatic weeds harvester. It is mainly used to collect floating garbage, aquatic vegetation, and salvage in reservoirs, rivers, lakes, and coastal areas.

In addition, we have our own R & D team and independent factory production to save production time.

certificate
Cases

FAQ
 

How long is the delivery time of your equipment?
–Within 15-20 days after receiving the deposit.
2. How to install the machine?
–If need the seller’s installation help, the seller will send 1 (1) technologist to Your workplace to conduct installation and
train 3-5 workers to operate the machine, buyer shall arrange at least 3-5 workers to work with the engineers.
3. How long is the equipment warranty period?
— We provide a 12-months warranty for the quality of the diesel engine/generator, motor water pump (impeller is 6months), storage battery, but not responsible for rust.

 

How to Replace the Drive Shaft

Several different functions in a vehicle are critical to its functioning, but the driveshaft is probably the part that needs to be understood the most. A damaged or damaged driveshaft can damage many other auto parts. This article will explain how this component works and some of the signs that it may need repair. This article is for the average person who wants to fix their car on their own but may not be familiar with mechanical repairs or even driveshaft mechanics. You can click the link below for more information.
air-compressor

Repair damaged driveshafts

If you own a car, you should know that the driveshaft is an integral part of the vehicle’s driveline. They ensure efficient transmission of power from the engine to the wheels and drive. However, if your driveshaft is damaged or cracked, your vehicle will not function properly. To keep your car safe and running at peak efficiency, you should have it repaired as soon as possible. Here are some simple steps to replace the drive shaft.
First, diagnose the cause of the drive shaft damage. If your car is making unusual noises, the driveshaft may be damaged. This is because worn bushings and bearings support the drive shaft. Therefore, the rotation of the drive shaft is affected. The noise will be squeaks, dings or rattles. Once the problem has been diagnosed, it is time to repair the damaged drive shaft.
Professionals can repair your driveshaft at relatively low cost. Costs vary depending on the type of drive shaft and its condition. Axle repairs can range from $300 to $1,000. Labor is usually only around $200. A simple repair can cost between $150 and $1700. You’ll save hundreds of dollars if you’re able to fix the problem yourself. You may need to spend a few more hours educating yourself about the problem before handing it over to a professional for proper diagnosis and repair.
The cost of repairing a damaged driveshaft varies by model and manufacturer. It can cost as much as $2,000 depending on parts and labor. While labor costs can vary, parts and labor are typically around $70. On average, a damaged driveshaft repair costs between $400 and $600. However, these parts can be more expensive than that. If you don’t want to spend money on unnecessarily expensive repairs, you may need to pay a little more.
air-compressor

Learn how drive shafts work

While a car engine may be 1 of the most complex components in your vehicle, the driveshaft has an equally important job. The driveshaft transmits the power of the engine to the wheels, turning the wheels and making the vehicle move. Driveshaft torque refers to the force associated with rotational motion. Drive shafts must be able to withstand extreme conditions or they may break. Driveshafts are not designed to bend, so understanding how they work is critical to the proper functioning of the vehicle.
The drive shaft includes many components. The CV connector is 1 of them. This is the last stop before the wheels spin. CV joints are also known as “doughnut” joints. The CV joint helps balance the load on the driveshaft, the final stop between the engine and the final drive assembly. Finally, the axle is a single rotating shaft that transmits power from the final drive assembly to the wheels.
Different types of drive shafts have different numbers of joints. They transmit torque from the engine to the wheels and must accommodate differences in length and angle. The drive shaft of a front-wheel drive vehicle usually includes a connecting shaft, an inner constant velocity joint and an outer fixed joint. They also have anti-lock system rings and torsional dampers to help them run smoothly. This guide will help you understand the basics of driveshafts and keep your car in good shape.
The CV joint is the heart of the driveshaft, it enables the wheels of the car to move at a constant speed. The connector also helps transmit power efficiently. You can learn more about CV joint driveshafts by looking at the top 3 driveshaft questions
The U-joint on the intermediate shaft may be worn or damaged. Small deviations in these joints can cause slight vibrations and wobble. Over time, these vibrations can wear out drivetrain components, including U-joints and differential seals. Additional wear on the center support bearing is also expected. If your driveshaft is leaking oil, the next step is to check your transmission.
The drive shaft is an important part of the car. They transmit power from the engine to the transmission. They also connect the axles and CV joints. When these components are in good condition, they transmit power to the wheels. If you find them loose or stuck, it can cause the vehicle to bounce. To ensure proper torque transfer, your car needs to stay on the road. While rough roads are normal, bumps and bumps are common.
air-compressor

Common signs of damaged driveshafts

If your vehicle vibrates heavily underneath, you may be dealing with a faulty propshaft. This issue limits your overall control of the vehicle and cannot be ignored. If you hear this noise frequently, the problem may be the cause and should be diagnosed as soon as possible. Here are some common symptoms of a damaged driveshaft. If you experience this noise while driving, you should have your vehicle inspected by a mechanic.
A clanging sound can also be 1 of the signs of a damaged driveshaft. A ding may be a sign of a faulty U-joint or center bearing. This can also be a symptom of worn center bearings. To keep your vehicle safe and functioning properly, it is best to have your driveshaft inspected by a certified mechanic. This can prevent serious damage to your car.
A worn drive shaft can cause difficulty turning, which can be a major safety issue. Fortunately, there are many ways to tell if your driveshaft needs service. The first thing you can do is check the u-joint itself. If it moves too much or too little in any direction, it probably means your driveshaft is faulty. Also, rust on the bearing cap seals may indicate a faulty drive shaft.
The next time your car rattles, it might be time for a mechanic to check it out. Whether your vehicle has a manual or automatic transmission, the driveshaft plays an important role in your vehicle’s performance. When 1 or both driveshafts fail, it can make the vehicle unsafe or impossible to drive. Therefore, you should have your car inspected by a mechanic as soon as possible to prevent further problems.
Your vehicle should also be regularly lubricated with grease and chain to prevent corrosion. This will prevent grease from escaping and causing dirt and grease to build up. Another common sign is a dirty driveshaft. Make sure your phone is free of debris and in good condition. Finally, make sure the driveshaft chain and cover are in place. In most cases, if you notice any of these common symptoms, your vehicle’s driveshaft should be replaced.
Other signs of a damaged driveshaft include uneven wheel rotation, difficulty turning the car, and increased drag when trying to turn. A worn U-joint also inhibits the ability of the steering wheel to turn, making it more difficult to turn. Another sign of a faulty driveshaft is the shuddering noise the car makes when accelerating. Vehicles with damaged driveshafts should be inspected as soon as possible to avoid costly repairs.

China Good quality Diesel Hydraulic or Electric Drive with Corresponding Gearboxes Diverse and Reliable Dredging Vessel Winches   near me supplier China Good quality Diesel Hydraulic or Electric Drive with Corresponding Gearboxes Diverse and Reliable Dredging Vessel Winches   near me supplier

China OEM Rotary Tablet Press Machine for Hydraulic Drive System near me factory

Product Description

Application:
        That machine is a double press automatic rotation can be equipped with force-feeding system for shape-pressing equipment, which have the function of press the grains material to be round or irregular shape tablets, such as candy, calcium tablets double-sides with letter printing and etc. which widely suitable for the Industries of pharmaceutical, Chemical, Foodstuff, Plastic Electronic, Powder Metallurgy and so on.

Features:
1. The material of the machine is made of stainless steel with totally closed, the surface of turntable deal with polished and prevent cross pollution which meet the GMP standard.
2. It is equipped with Organic-glass perspective window for tablet producing observation. Each perspective window could be fully opened and easy for cleaning and maintenance.
3. It is adopts the import Frequency Timing with Electromagnetism Clutch.
4. Driving system is equipped with oil box and running under oil, easy for heat dissipation and wear-resistance.
5. It is equipped with Dust Collector as well, which avoid the dust emission, and recycle to save dust
 

Main Technical Data:
 

Model ZP-31D ZP-35D ZP-37D
Station 31 35 37
Production Capacity 100,000pcs/hour 150,000pcs/hour 170,000pcs/hour
Max. Pressure 80KN 80KN 80KN
Max. Dia 22mm 13mm 13mm
Max. Filling Depth 15mm 15mm 15mm
Max. Thickness 9mm 6mm 6mm
Turret Speed 14-25r/min 14-35r/min 14-35r/min
Motor 4Kw 380V 50hz 3 phase
Overall Dimension 1500*1300*1650mm
Weight 1950kg 1950kg 1950kg

 

Q: What price terms you offer?

A: We can offer FOB, FCA, CFR, CIF, EXW and other price terms based on your request.

Q: What payment terms you take?

A: TT, LC, other terms are also workable.

Q: Will you help with installation and stuff training?

A: Yes, we can send our engineers to your place to CZPT the installation and train your workers if you need, but the buyer should bear our technician’s round tickets, accomodation, food and subsidiary USD100/day.

Q: How can I visit your factory?

A: Our factory is located in HangZhou city ZHangZhoug Province. Just let us know your scheduel in advance and we will arrange everything for you!
Any other doubts about our machine, please feel easy to contact with us.

Standard Length Splined Shafts

Standard Length Splined Shafts are made from Mild Steel and are perfect for most repair jobs, custom machinery building, and many other applications. All stock splined shafts are 2-3/4 inches in length, and full splines are available in any length, with additional materials and working lengths available upon request and quotation. CZPT Manufacturing Company is proud to offer these standard length shafts.
splineshaft

Disc brake mounting interfaces that are splined

There are 2 common disc brake mounting interfaces, splined and center lock. Disc brakes with splined interfaces are more common. They are usually easier to install. The center lock system requires a tool to remove the locking ring on the disc hub. Six-bolt rotors are easier to install and require only 6 bolts. The center lock system is commonly used with performance road bikes.
Post mount disc brakes require a post mount adapter, while flat mount disc brakes do not. Post mount adapters are more common and are used for carbon mountain bikes, while flat mount interfaces are becoming the norm on road and gravel bikes. All disc brake adapters are adjustable for rotor size, though. Road bikes usually use 160mm rotors while mountain bikes use rotors that are 180mm or 200mm.
splineshaft

Disc brake mounting interfaces that are helical splined

A helical splined disc brake mounting interface is designed with a splined connection between the hub and brake disc. This splined connection allows for a relatively large amount of radial and rotational displacement between the disc and hub. A loosely splined interface can cause a rattling noise due to the movement of the disc in relation to the hub.
The splines on the brake disc and hub are connected via an air gap. The air gap helps reduce heat conduction from the brake disc to the hub. The present invention addresses problems of noise, heat, and retraction of brake discs at the release of the brake. It also addresses issues with skewing and dragging. If you’re unsure whether this type of mounting interface is right for you, consult your mechanic.
Disc brake mounting interfaces that are helix-splined may be used in conjunction with other components of a wheel. They are particularly useful in disc brake mounting interfaces for hub-to-hub assemblies. The spacer elements, which are preferably located circumferentially, provide substantially the same function no matter how the brake disc rotates. Preferably, 3 spacer elements are located around the brake disc. Each of these spacer elements has equal clearance between the splines of the brake disc and the hub.
Spacer elements 6 include a helical spring portion 6.1 and extensions in tangential directions that terminate in hooks 6.4. These hooks abut against the brake disc 1 in both directions. The helical spring portion 5.1 and 6.1 have stiffness enough to absorb radial impacts. The spacer elements are arranged around the circumference of the intermeshing zone.
A helical splined disc mount includes a stabilizing element formed as a helical spring. The helical spring extends to the disc’s splines and teeth. The ends of the extension extend in opposite directions, while brackets at each end engage with the disc’s splines and teeth. This stabilizing element is positioned axially over the disc’s width.
Helical splined disc brake mounting interfaces are popular in bicycles and road bicycles. They’re a reliable, durable way to mount your brakes. Splines are widely used in aerospace, and have a higher fatigue life and reliability. The interfaces between the splined disc brake and BB spindle are made from aluminum and acetate.
As the splined hub mounts the disc in a helical fashion, the spring wire and disc 2 will be positioned in close contact. As the spring wire contacts the disc, it creates friction forces that are evenly distributed throughout the disc. This allows for a wide range of axial motion. Disc brake mounting interfaces that are helical splined have higher strength and stiffness than their counterparts.
Disc brake mounting interfaces that are helically splined can have a wide range of splined surfaces. The splined surfaces are the most common type of disc brake mounting interfaces. They are typically made of stainless steel or aluminum and can be used for a variety of applications. However, a splined disc mount will not support a disc with an oversized brake caliper.

China OEM Rotary Tablet Press Machine for Hydraulic Drive System   near me factory China OEM Rotary Tablet Press Machine for Hydraulic Drive System   near me factory

China Professional Full Automatic Size Adjustable Hydraulic Motor Drive Metal CZ Purlin Cold Roll Forming Machine with Best Sales

Product Description

Full Automatic Size Adjustable Hydraulic Motor Drive Metal CZ Purlin Cold Roll Forming Machine

C or Z Shape Purline Forming Machine can produce many size of C & Z shape purline. The whole line mainly consists of uncoiler and its base, coil sheet flattening equipment, C & Z shape forming system, punching equipment, post-cutting equipment,, hydraulic station, and controlling system.

 

Drawing /Profile

Material Type :GI ,PPGI  Aluminum .
                          Thickness :2.0-3.0mm 
                          Size :C :80-300mm   Z :120-300mm

 

Product Description

 Main Parameter

 1.Components of roll forming machine:
 

o. Item. Unit. Qty.
1. Manual decolier set 1
2. Molding core set 1
3. PLC control box set 1
4. Hydraulic pump set 1
5. Exit rack set 1
6. Cutting system set 1

 

1) Process 

  Manual decoiler→Feeding material into machine→Roll forming machine→Measure  length→Hydraulic cutting→Finished Products 

 

 

 1) Decoiler

 

3T Manual Decoiler 
1) Inner Diameter :450-550mm
2) Width :600mm
3) Capacity :3T

 

 

 2)Main parameter 

Name

Metal Steel CZ Purline Roll Forming Machine

1

Suitable raw material

PPGI/PPGL/GI/GL Steel Coils

2

Thickness of coil sheet 

2-3mm

3

Punching device

round hole or elliptical hole

4

Effective width

C:80-300mm
Z:100-300mm

5

Under frame 

350H-beam

6

Diameter of Soild shaft

80mm, high grade 45# steel, finish turning, cylindrical grinding, with keyway

7

Roller

Gcr15, processed by CNC lathe, Quenched and tempered treatment, 

hard chrome coated 0.05-0.07mm

8

Thickness of middle plate

18mm

9

Forming stations

16

10

Drive type

By chain(1.5 inch) link bearing model 6212

11

Power of main motor

11kw with Cycloidal reducer, 

12

Power of pump station

5.5kw, 

13

Forming speed

About 15-20m/min

14

Hydraulic cutting

Controlled by PLC

15

PLC 

DELTA, ZheJiang / Mitsubishi, Japan

16

Material of cutting blade

Cr12Mov, quenching 58-62ºC

17

Frequency converter

It has the advantage of slowing down before cutting, 

to ensure thelength accuracy(±1mm, far better than 

industrialstandard ±3mm).

            Feeding                                    Forming                                                    Cutting 

Control BOX                                                                    Oil pump
                                                 

3)After-Sales Service

1. we can produce the special machine,send your drawing to us,we can design for you.

 

2. if you buy our products,we also can help you to purchase the material,like color roll,the price is lower than you buy by yourself.

 

3. we provide a one year warranty and lifelong technical support, we can send our technicians to you to give you on-site training.

 

The training period would be for no more than 1 week with the customer paying for the visa, return ticket, food, accommodations and a daily wage of US100.

 

4. engineers available to service machinery overseas.

 

5. if you come to visit our factory,we can book the room for you, car pick up to send.

 

Thanks for visiting our products, if you have interest, pls leave your message, or you can contact us, speical design is avaliable!

 

The real data, the most professinal foreign trade team, your best trustable partner.

 

 

4) Company :Main company and branch

 

 

 

FAQ:

———————————————————————————
 

A:- What service can you provide before order?

– About the pre-sale service. We provide you answers of all your questions on our machines, such as technical parameter, price, payment terms, ect. If you wanna visit our factory and check the machines, we also can send you invitation letter and give you our warmest welcome.

B:- Can you finish the machine during the delivery time?

– We will finish the machine in time according to determined lead time.

C:- Can you provide some spare parts?

– Yes, of course. The quick-wear parts are sent to you together with the machine.

D:- What is the after- sale service?

– About the after-sales service. We can send technician to your country to fix the machine. The buyer should bear all the cost including: visa, Roundtrip ticket and suitable accommodation, also buyer should pay the salary 100USD/day.

The warranty is 1 year. and we will provide the technical support for the whole life. It is free to maintain the machine the first year after buying, including changing the main components. The first year hence, you will pay for our technician $50 per day to maintain the machine. And the components are not free, if you need to get it from us.

E:- Any other service?

– We can manufacture, design, installation and debug various roll forming machines including standard and customized machines.

It is free to assemble machine and train your works, but the buyer should pay for the round-trip airplane ticket, and arrange accommodation during that time.

 

What Are the Advantages of a Splined Shaft?

If you are looking for the right splined shaft for your machine, you should know a few important things. First, what type of material should be used? Stainless steel is usually the most appropriate choice, because of its ability to offer low noise and fatigue failure. Secondly, it can be machined using a slotting or shaping machine. Lastly, it will ensure smooth motion. So, what are the advantages of a splined shaft?
Stainless steel is the best material for splined shafts

When choosing a splined shaft, you should consider its hardness, quality, and finish. Stainless steel has superior corrosion and wear resistance. Carbon steel is another good material for splined shafts. Carbon steel has a shallow carbon content (about 1.7%), which makes it more malleable and helps ensure smooth motion. But if you’re not willing to spend the money on stainless steel, consider other options.
There are 2 main types of splines: parallel splines and crowned splines. Involute splines have parallel grooves and allow linear and rotary motion. Helical splines have involute teeth and are oriented at an angle. This type allows for many teeth on the shaft and minimizes the stress concentration in the stationary joint.
Large evenly spaced splines are widely used in hydraulic systems, drivetrains, and machine tools. They are typically made from carbon steel (CR10) and stainless steel (AISI 304). This material is durable and meets the requirements of ISO 14-B, formerly DIN 5463-B. Splined shafts are typically made of stainless steel or C45 steel, though there are many other materials available.
Stainless steel is the best material for a splined shaft. This metal is also incredibly affordable. In most cases, stainless steel is the best choice for these shafts because it offers the best corrosion resistance. There are many different types of splined shafts, and each 1 is suited for a particular application. There are also many different types of stainless steel, so choose stainless steel if you want the best quality.
For those looking for high-quality splined shafts, CZPT Spline Shafts offer many benefits. They can reduce costs, improve positional accuracy, and reduce friction. With the CZPT TFE coating, splined shafts can reduce energy and heat buildup, and extend the life of your products. And, they’re easy to install – all you need to do is install them.
splineshaft

They provide low noise, low wear and fatigue failure

The splines in a splined shaft are composed of 2 main parts: the spline root fillet and the spline relief. The spline root fillet is the most critical part, because fatigue failure starts there and propagates to the relief. The spline relief is more susceptible to fatigue failure because of its involute tooth shape, which offers a lower stress to the shaft and has a smaller area of contact.
The fatigue life of splined shafts is determined by measuring the S-N curve. This is also known as the Wohler curve, and it is the relationship between stress amplitude and number of cycles. It depends on the material, geometry and way of loading. It can be obtained from a physical test on a uniform material specimen under a constant amplitude load. Approximations for low-alloy steel parts can be made using a lower-alloy steel material.
Splined shafts provide low noise, minimal wear and fatigue failure. However, some mechanical transmission elements need to be removed from the shaft during assembly and manufacturing processes. The shafts must still be capable of relative axial movement for functional purposes. As such, good spline joints are essential to high-quality torque transmission, minimal backlash, and low noise. The major failure modes of spline shafts include fretting corrosion, tooth breakage, and fatigue failure.
The outer disc carrier spline is susceptible to tensile stress and fatigue failure. High customer demands for low noise and low wear and fatigue failure makes splined shafts an excellent choice. A fractured spline gear coupling was received for analysis. It was installed near the top of a filter shaft and inserted into the gearbox motor. The service history was unknown. The fractured spline gear coupling had longitudinally cracked and arrested at the termination of the spline gear teeth. The spline gear teeth also exhibited wear and deformation.
A new spline coupling method detects fault propagation in hollow cylindrical splined shafts. A spline coupling is fabricated using an AE method with the spline section unrolled into a metal plate of the same thickness as the cylinder wall. In addition, the spline coupling is misaligned, which puts significant concentration on the spline teeth. This further accelerates the rate of fretting fatigue and wear.
A spline joint should be lubricated after 25 hours of operation. Frequent lubrication can increase maintenance costs and cause downtime. Moreover, the lubricant may retain abrasive particles at the interfaces. In some cases, lubricants can even cause misalignment, leading to premature failure. So, the lubrication of a spline coupling is vital in ensuring proper functioning of the shaft.
The design of a spline coupling can be optimized to enhance its wear resistance and reliability. Surface treatments, loads, and rotation affect the friction properties of a spline coupling. In addition, a finite element method was developed to predict wear of a floating spline coupling. This method is feasible and provides a reliable basis for predicting the wear and fatigue life of a spline coupling.
splineshaft

They can be machined using a slotting or shaping machine

Machines can be used to shape splined shafts in a variety of industries. They are useful in many applications, including gearboxes, braking systems, and axles. A slotted shaft can be manipulated in several ways, including hobbling, broaching, and slotting. In addition to shaping, splines are also useful in reducing bar diameter.
When using a slotting or shaping machine, the workpiece is held against a pedestal that has a uniform thickness. The machine is equipped with a stand column and limiting column (Figure 1), each positioned perpendicular to the upper surface of the pedestal. The limiting column axis is located on the same line as the stand column. During the slotting or shaping process, the tool is fed in and out until the desired space is achieved.
One process involves cutting splines into a shaft. Straddle milling, spline shaping, and spline cutting are 2 common processes used to create splined shafts. Straddle milling involves a fixed indexing fixture that holds the shaft steady, while rotating milling cutters cut the groove in the length of the shaft. Several passes are required to ensure uniformity throughout the spline.
Splines are a type of gear. The ridges or teeth on the drive shaft mesh with grooves in the mating piece. A splined shaft allows the transmission of torque to a mate piece while maximizing the power transfer. Splines are used in heavy vehicles, construction, agriculture, and massive earthmoving machinery. Splines are used in virtually every type of rotary motion, from axles to transmission systems. They also offer better fatigue life and reliability.
Slotting or shaping machines can also be used to shape splined shafts. Slotting machines are often used to machine splined shafts, because it is easier to make them with these machines. Using a slotting or shaping machine can result in splined shafts of different sizes. It is important to follow a set of spline standards to ensure your parts are manufactured to the highest standards.
A milling machine is another option for producing splined shafts. A spline shaft can be set up between 2 centers in an indexing fixture. Two side milling cutters are mounted on an arbor and a spacer and shims are inserted between them. The arbor and cutters are then mounted to a milling machine spindle. To make sure the cutters center themselves over the splined shaft, an adjustment must be made to the spindle of the machine.
The machining process is very different for internal and external splines. External splines can be broached, shaped, milled, or hobbed, while internal splines cannot. These machines use hard alloy, but they are not as good for internal splines. A machine with a slotting mechanism is necessary for these operations.

China Professional Full Automatic Size Adjustable Hydraulic Motor Drive Metal CZ Purlin Cold Roll Forming Machine   with Best SalesChina Professional Full Automatic Size Adjustable Hydraulic Motor Drive Metal CZ Purlin Cold Roll Forming Machine   with Best Sales

China manufacturer Kexinda New Customized PLC Control System High Speed Full Automatic Hydraulic Motor Drive Metal C Purlin Cold Roll Forming Machine with Good quality

Product Description

 c purlin roll forming machine

Product Description

New Customized PLC Control System High Speed Full Automatic Hydraulic Motor Drive Metal CZ Purlin Cold Roll Forming Machine for Peb Size Adjustable

 

 

The chart of process flow:

Decoilingactive feedingroll formingmeasuring lengthcutting to lengthproduct to stand

 

Main equipment:

Decoiler, main forming machine, hydraulic cutting, product stand, hydraulic systerm, electric systerm

Techenical parameters:

1Automatic inner tight decoiler

A coil inner diameter:450mm-700mm

B max width of coiling: 500mm

C max loading of cloading:4500kg

2 main forming machine:

A number of forming steps:12 or according to customers requirement

B material of shaft:45# adjustable treatment. Outer diameter 70mm

C material of roller:high grade 45# steel (plated chrome on surface)

D main motor power:22kw

E forming speed :8-12m/min or according to the customers requirement

F stand: 350#steel welding

G the plated chrome of roller surface:0.05mm

3 hydraulic cutter:

A material of blade:Cr12with quenched treatment

B cutting systerm: adopt advanced hydraulic drive, automatic cut after forming, no distortion, no waste, high safe factor(main motor stops and cut)

4 product warranty:

12 months and we will provide the technical support for the whole life of the equipment.

 

The chart of process flow:

A Technical specification

(1)   Manual decoiler

(2) Roll-Forming M/C:

(3) Cutting Mechanism

(4)  Hydraulic System

(5)Computer control cabinet :

One counter gauges length, pulses, and decides length

(7) Output table

table

 

Packaging & Shipping

 

Company Information

FAQ

 

1:How to play order:

 

Inquiry—confirm the profile drawings and price—confirm the PI—arrange the deposit or L/C—then OK

 

2:How to visit our company:

 

Fly to ZheJiang airport: By high speed train From ZheJiang Nan to HangZhou Xi(1 hour),then we can pick up you.

 

Fly to ZheJiang Airport:By high speed train From ZheJiang Xihu (West Lake) Dis.ao to HangZhou Xi(4.5hours),then we can pick up you.

 

 

 

3:When we exported the machines:

We have beening making and exporting the machines since from the year of 1998.

 

4:If you want to get more pictures or videos of the machines,I can send them to you by Email or Skype

 

 

 

 

 

 

 

 

 

Guide to Drive Shafts and U-Joints

If you’re concerned about the performance of your car’s driveshaft, you’re not alone. Many car owners are unaware of the warning signs of a failed driveshaft, but knowing what to look for can help you avoid costly repairs. Here is a brief guide on drive shafts, U-joints and maintenance intervals. Listed below are key points to consider before replacing a vehicle driveshaft.
air-compressor

Symptoms of Driveshaft Failure

Identifying a faulty driveshaft is easy if you’ve ever heard a strange noise from under your car. These sounds are caused by worn U-joints and bearings supporting the drive shaft. When they fail, the drive shafts stop rotating properly, creating a clanking or squeaking sound. When this happens, you may hear noise from the side of the steering wheel or floor.
In addition to noise, a faulty driveshaft can cause your car to swerve in tight corners. It can also lead to suspended bindings that limit overall control. Therefore, you should have these symptoms checked by a mechanic as soon as you notice them. If you notice any of the symptoms above, your next step should be to tow your vehicle to a mechanic. To avoid extra trouble, make sure you’ve taken precautions by checking your car’s oil level.
In addition to these symptoms, you should also look for any noise from the drive shaft. The first thing to look for is the squeak. This was caused by severe damage to the U-joint attached to the drive shaft. In addition to noise, you should also look for rust on the bearing cap seals. In extreme cases, your car can even shudder when accelerating.
Vibration while driving can be an early warning sign of a driveshaft failure. Vibration can be due to worn bushings, stuck sliding yokes, or even springs or bent yokes. Excessive torque can be caused by a worn center bearing or a damaged U-joint. The vehicle may make unusual noises in the chassis system.
If you notice these signs, it’s time to take your car to a mechanic. You should check regularly, especially heavy vehicles. If you’re not sure what’s causing the noise, check your car’s transmission, engine, and rear differential. If you suspect that a driveshaft needs to be replaced, a certified mechanic can replace the driveshaft in your car.
air-compressor

Drive shaft type

Driveshafts are used in many different types of vehicles. These include four-wheel drive, front-engine rear-wheel drive, motorcycles and boats. Each type of drive shaft has its own purpose. Below is an overview of the 3 most common types of drive shafts:
The driveshaft is a circular, elongated shaft that transmits torque from the engine to the wheels. Drive shafts often contain many joints to compensate for changes in length or angle. Some drive shafts also include connecting shafts and internal constant velocity joints. Some also include torsional dampers, spline joints, and even prismatic joints. The most important thing about the driveshaft is that it plays a vital role in transmitting torque from the engine to the wheels.
The drive shaft needs to be both light and strong to move torque. While steel is the most commonly used material for automotive driveshafts, other materials such as aluminum, composites, and carbon fiber are also commonly used. It all depends on the purpose and size of the vehicle. Precision Manufacturing is a good source for OEM products and OEM driveshafts. So when you’re looking for a new driveshaft, keep these factors in mind when buying.
Cardan joints are another common drive shaft. A universal joint, also known as a U-joint, is a flexible coupling that allows 1 shaft to drive the other at an angle. This type of drive shaft allows power to be transmitted while the angle of the other shaft is constantly changing. While a gimbal is a good option, it’s not a perfect solution for all applications.
CZPT, Inc. has state-of-the-art machinery to service all types of drive shafts, from small cars to race cars. They serve a variety of needs, including racing, industry and agriculture. Whether you need a new drive shaft or a simple adjustment, the staff at CZPT can meet all your needs. You’ll be back on the road soon!

U-joint

If your car yoke or u-joint shows signs of wear, it’s time to replace them. The easiest way to replace them is to follow the steps below. Use a large flathead screwdriver to test. If you feel any movement, the U-joint is faulty. Also, inspect the bearing caps for damage or rust. If you can’t find the u-joint wrench, try checking with a flashlight.
When inspecting U-joints, make sure they are properly lubricated and lubricated. If the joint is dry or poorly lubricated, it can quickly fail and cause your car to squeak while driving. Another sign that a joint is about to fail is a sudden, excessive whine. Check your u-joints every year or so to make sure they are in proper working order.
Whether your u-joint is sealed or lubricated will depend on the make and model of your vehicle. When your vehicle is off-road, you need to install lubricable U-joints for durability and longevity. A new driveshaft or derailleur will cost more than a U-joint. Also, if you don’t have a good understanding of how to replace them, you may need to do some transmission work on your vehicle.
When replacing the U-joint on the drive shaft, be sure to choose an OEM replacement whenever possible. While you can easily repair or replace the original head, if the u-joint is not lubricated, you may need to replace it. A damaged gimbal joint can cause problems with your car’s transmission or other critical components. Replacing your car’s U-joint early can ensure its long-term performance.
Another option is to use 2 CV joints on the drive shaft. Using multiple CV joints on the drive shaft helps you in situations where alignment is difficult or operating angles do not match. This type of driveshaft joint is more expensive and complex than a U-joint. The disadvantages of using multiple CV joints are additional length, weight, and reduced operating angle. There are many reasons to use a U-joint on a drive shaft.
air-compressor

maintenance interval

Checking U-joints and slip joints is a critical part of routine maintenance. Most vehicles are equipped with lube fittings on the driveshaft slip joint, which should be checked and lubricated at every oil change. CZPT technicians are well-versed in axles and can easily identify a bad U-joint based on the sound of acceleration or shifting. If not repaired properly, the drive shaft can fall off, requiring expensive repairs.
Oil filters and oil changes are other parts of a vehicle’s mechanical system. To prevent rust, the oil in these parts must be replaced. The same goes for transmission. Your vehicle’s driveshaft should be inspected at least every 60,000 miles. The vehicle’s transmission and clutch should also be checked for wear. Other components that should be checked include PCV valves, oil lines and connections, spark plugs, tire bearings, steering gearboxes and brakes.
If your vehicle has a manual transmission, it is best to have it serviced by CZPT’s East Lexington experts. These services should be performed every 2 to 4 years or every 24,000 miles. For best results, refer to the owner’s manual for recommended maintenance intervals. CZPT technicians are experienced in axles and differentials. Regular maintenance of your drivetrain will keep it in good working order.

China manufacturer Kexinda New Customized PLC Control System High Speed Full Automatic Hydraulic Motor Drive Metal C Purlin Cold Roll Forming Machine   with Good qualityChina manufacturer Kexinda New Customized PLC Control System High Speed Full Automatic Hydraulic Motor Drive Metal C Purlin Cold Roll Forming Machine   with Good quality

China high quality Hydraulic Drive Self Propelled Aerial Work Platform Lift Height 6m Scissor Type with high quality

Product Description

Scissors Aerial Working Platform YLH0.5-6 series
The scissors aerial work platform is a special equipment that can be widely used for the purpose of working high above the ground. It’s scissors-like mechanical structure gives the platform a high stability when it is lifted up. The spacious work platform and high bearing capacity have enlarged the aerial service scope of the platform and make it suitable for several persons working together simultaneously. With the equipment, aerial work will be done more efficiently and more safely.
1. The main structure of high-strength manganese steel.
2. Protection device against dropping.
Option: extended platform
3. AC-380V/50Hz power supply.
4. AC-220V/50Hz power supply.
5. DC power supply.

Model   YLH0.5-6 YLH0.5-7.5 YLH0.5-9 YLH0.5-11
Load Capacity (kg) 500 500 500 500
Min. Platform Height (mm) 1080 1200 1360 1480
Max. Platform Height (mm) 6000 7500 9000 11000
Platform Size (mm) 2200×1000×1100 2200×1000×1100 2200×1000×1100 2200×1000×1100
Expanded Dimension Of Legs (mm) 2700×2200 2700×2200 2700×2200 2700×2200
Elevating Time (sec.) 77 77 77 77
DC Driving Motor (V/Kw)
DC Lifting Motor (V/Kw) 24/2.2 24/2.2 24/2.2 24/2.2
Battery (V/Ah) 24/150 24/150 24/150 24/150
Charger (V/A) 24/20 24/20 24/20 24/20
AC Motor Power (Kw) 2.2 2.2 2.2 3
AC Voltage (V) AC,220/DC,24 AC,220/DC,24 AC,220/DC,24 AC,380
Overall Size (mm) 2270×1300×1180 2270×1300×1300 2270×1300×1460 2270×1300×1580
Net Weight (kg) 950 1350 1600 1800

 

 

 

FAQ:
1.Q.Are you factory?
   A.Yes.Our factory mainly produce drum handling equipment,drum stacker,drum truck,aluminum hand trolley ,kinds lift table ,forklift attachment and shop crane with CE approved, pasted Third-party certification(SGS/ISO9001).
2.Q.Can I place mix order?
   A.Yes.You can mix different models as your request.
3.Q.Can we order products?
   A.Yes. Customers can option size,color,weighing,panel etc.Welcome ODM/OEM orders.
4.Q.Can we visit your factory?
   A.Welcome anytime .Our factory address:No. 38, Yansheng Road, Xihu (West Lake) Dis.ao Industrial Park,Xihu (West Lake) Dis. District,HangZhou,ZheJiang ,China (Mainland) .You can take the plane, high-speed rail, motor car, train, car.
5.Q.Are the products covered by a warranty?
   A.Yes.All our machines carry a full 1 year major parts warranty.

Quality Control in our HangZhou Tongyang:
The quality control is strictly in accordance with ISO9001 quality management system. When the products are finished, the inspection is 100% executed strictly
1) Strict quality control system on the whole process of production
2) Imported key arts to ensure the high quality of our products
3) Advanced equipment and tools for examination and quality control
4) 100% strict examining products before shipment
5) All the quality complaints and improvement requirements are always studied seriously, if reasonable, put into practice immediately.

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China high quality Hydraulic Drive Self Propelled Aerial Work Platform Lift Height 6m Scissor Type   with high qualityChina high quality Hydraulic Drive Self Propelled Aerial Work Platform Lift Height 6m Scissor Type   with high quality

China supplier 10mxtl Never Stuck Al-Ti Alloy Drive Hydraulic Torque Wrench Tools for Petrochemical Industry Sales by Manufacturer near me manufacturer

Product Description

MXTL Series-Drive Torque Wrench

  MXTL Series-Drive Torque Wrench
* With the first induction locking structure, it can automatically realize self-locking and release, cancel the manual release trigger, perfectly solve the problem of bolt backout and jamming.
* Electroless nickel plating, laser cladding process, strengthen the strength of the cylinder, extend the life.
* Aviation Al-Ti alloy and integrated design ensure its wide applicability.
* The maximum working pressure is 70MPa.Drive by advanced precision ratchet. The output torque repeat ability up to ±3% .
* The 360º×180º rotating oil connection has no limitation in used space.
* The trigger button can place the 360º fine-tuning reaction arm on any fulcrum.
* Direct push drive shaft make the tightening and dismounting states easy to be switched.
* The Lock drive shaft can be customized according to customer’s requirement.
* Torque from 185Nm to 150000Nm have 12 models for your choice, more complete specifications, more bolt coverage.

 

Product Features:

 

Type Selection Table of MXTL Series-Drive Hydraulic Wrench:
 
Model 1MXTL 3MXTL 5MXTL 10MXTL 15MXTL 20MXTL 25MXTL 35MXTL 45MXTL 50MXTL 95MXTL
Torque 185 436 779 1502 2071 2617 3493 4963 5912 7032 14085
( Nm) 1852 4364 7789 15571 2571 26171 34928 49627 59123 7571 140848
Weight(Kg) 2.7 4.8 8.8 14.5 19 25 37.5 44 63 89 155
L1 138 170 205 238 268 304 331 390 412 418 520
L2 194 251 290 351 390 442 483 558 570 596 758
L3 63 89 102 118 141 146 158 177 188 195 246
H1 50 70 80 102 112 120 138 150 163 166 210
H2 73 102 124 147 171 183 202 219 229 236 307
H3 96 122 147 177 208 226 250 282 288 300 415
H4 140 165 191 222 252 267 291 323 332 366 473
R1 26 34 39 49 56 60 66 77 80 82 115
R2 107 138 156 177 195 240 260 298 303 325 400
Square Drive 3/4′ 1′ 1-1/2′ 1-1/2′ 2-1/2′ 2-1/2′ 2-1/2′ 2-1/2′ 2-1/2′ 3′ 4′

How  to choose torque range:

How to Choose Hydraulic Wrench:

Bolt Pretightening Method:

Company Profile:

Testing Machine:

Packing:

With Aluminum Plastic Tool Box,Protected by Wooden Box. Transport By Truck, By Sea ,By Air or By Train.

FAQ:

1.QAre you the manufacturer or trading company?

A: We are the manufacturer.

2.Q:Where is your factory?

A: It’s located in HangZhou city ZheJiang Province.

3.Q:What are your main products?

A:Hydraulic torque wrench, bolt tensioner, hydraulic pump, air pump and customized products.

4.Q:What is the MOQ?

A:MOQ is 1pc.

5.Q:How can I get the price list?

A:Please send us email with your exact requirements, then you will receive our reply soon.

6.Q:Can I buy your products in our local market?

A:It depends, please contact sales representative to learn more details.

7.Q:How long is the delivery?

A:Usually we have enough stock, it depends on the actual order quantity.

8.Q:How is your package?

A:It’s different for different products. For wrench it’s double packing with Aluminium plastic carton inside and wooden box outside. For others we use wooden box only.

9.Q:What is your payment term?

A:Very flexible, TT, L/C, RMB are also acceptable.

How to Calculate Stiffness, Centering Force, Wear and Fatigue Failure of Spline Couplings

There are various types of spline couplings. These couplings have several important properties. These properties are: Stiffness, Involute splines, Misalignment, Wear and fatigue failure. To understand how these characteristics relate to spline couplings, read this article. It will give you the necessary knowledge to determine which type of coupling best suits your needs. Keeping in mind that spline couplings are usually spherical in shape, they are made of steel.
splineshaft

Involute splines

An effective side interference condition minimizes gear misalignment. When 2 splines are coupled with no spline misalignment, the maximum tensile root stress shifts to the left by 5 mm. A linear lead variation, which results from multiple connections along the length of the spline contact, increases the effective clearance or interference by a given percentage. This type of misalignment is undesirable for coupling high-speed equipment.
Involute splines are often used in gearboxes. These splines transmit high torque, and are better able to distribute load among multiple teeth throughout the coupling circumference. The involute profile and lead errors are related to the spacing between spline teeth and keyways. For coupling applications, industry practices use splines with 25 to 50-percent of spline teeth engaged. This load distribution is more uniform than that of conventional single-key couplings.
To determine the optimal tooth engagement for an involved spline coupling, Xiangzhen Xue and colleagues used a computer model to simulate the stress applied to the splines. The results from this study showed that a “permissible” Ruiz parameter should be used in coupling. By predicting the amount of wear and tear on a crowned spline, the researchers could accurately predict how much damage the components will sustain during the coupling process.
There are several ways to determine the optimal pressure angle for an involute spline. Involute splines are commonly measured using a pressure angle of 30 degrees. Similar to gears, involute splines are typically tested through a measurement over pins. This involves inserting specific-sized wires between gear teeth and measuring the distance between them. This method can tell whether the gear has a proper tooth profile.
The spline system shown in Figure 1 illustrates a vibration model. This simulation allows the user to understand how involute splines are used in coupling. The vibration model shows 4 concentrated mass blocks that represent the prime mover, the internal spline, and the load. It is important to note that the meshing deformation function represents the forces acting on these 3 components.
splineshaft

Stiffness of coupling

The calculation of stiffness of a spline coupling involves the measurement of its tooth engagement. In the following, we analyze the stiffness of a spline coupling with various types of teeth using 2 different methods. Direct inversion and blockwise inversion both reduce CPU time for stiffness calculation. However, they require evaluation submatrices. Here, we discuss the differences between these 2 methods.
The analytical model for spline couplings is derived in the second section. In the third section, the calculation process is explained in detail. We then validate this model against the FE method. Finally, we discuss the influence of stiffness nonlinearity on the rotor dynamics. Finally, we discuss the advantages and disadvantages of each method. We present a simple yet effective method for estimating the lateral stiffness of spline couplings.
The numerical calculation of the spline coupling is based on the semi-analytical spline load distribution model. This method involves refined contact grids and updating the compliance matrix at each iteration. Hence, it consumes significant computational time. Further, it is difficult to apply this method to the dynamic analysis of a rotor. This method has its own limitations and should be used only when the spline coupling is fully investigated.
The meshing force is the force generated by a misaligned spline coupling. It is related to the spline thickness and the transmitting torque of the rotor. The meshing force is also related to the dynamic vibration displacement. The result obtained from the meshing force analysis is given in Figures 7, 8, and 9.
The analysis presented in this paper aims to investigate the stiffness of spline couplings with a misaligned spline. Although the results of previous studies were accurate, some issues remained. For example, the misalignment of the spline may cause contact damages. The aim of this article is to investigate the problems associated with misaligned spline couplings and propose an analytical approach for estimating the contact pressure in a spline connection. We also compare our results to those obtained by pure numerical approaches.

Misalignment

To determine the centering force, the effective pressure angle must be known. Using the effective pressure angle, the centering force is calculated based on the maximum axial and radial loads and updated Dudley misalignment factors. The centering force is the maximum axial force that can be transmitted by friction. Several published misalignment factors are also included in the calculation. A new method is presented in this paper that considers the cam effect in the normal force.
In this new method, the stiffness along the spline joint can be integrated to obtain a global stiffness that is applicable to torsional vibration analysis. The stiffness of bearings can also be calculated at given levels of misalignment, allowing for accurate estimation of bearing dimensions. It is advisable to check the stiffness of bearings at all times to ensure that they are properly sized and aligned.
A misalignment in a spline coupling can result in wear or even failure. This is caused by an incorrectly aligned pitch profile. This problem is often overlooked, as the teeth are in contact throughout the involute profile. This causes the load to not be evenly distributed along the contact line. Consequently, it is important to consider the effect of misalignment on the contact force on the teeth of the spline coupling.
The centre of the male spline in Figure 2 is superposed on the female spline. The alignment meshing distances are also identical. Hence, the meshing force curves will change according to the dynamic vibration displacement. It is necessary to know the parameters of a spline coupling before implementing it. In this paper, the model for misalignment is presented for spline couplings and the related parameters.
Using a self-made spline coupling test rig, the effects of misalignment on a spline coupling are studied. In contrast to the typical spline coupling, misalignment in a spline coupling causes fretting wear at a specific position on the tooth surface. This is a leading cause of failure in these types of couplings.
splineshaft

Wear and fatigue failure

The failure of a spline coupling due to wear and fatigue is determined by the first occurrence of tooth wear and shaft misalignment. Standard design methods do not account for wear damage and assess the fatigue life with big approximations. Experimental investigations have been conducted to assess wear and fatigue damage in spline couplings. The tests were conducted on a dedicated test rig and special device connected to a standard fatigue machine. The working parameters such as torque, misalignment angle, and axial distance have been varied in order to measure fatigue damage. Over dimensioning has also been assessed.
During fatigue and wear, mechanical sliding takes place between the external and internal splines and results in catastrophic failure. The lack of literature on the wear and fatigue of spline couplings in aero-engines may be due to the lack of data on the coupling’s application. Wear and fatigue failure in splines depends on a number of factors, including the material pair, geometry, and lubrication conditions.
The analysis of spline couplings shows that over-dimensioning is common and leads to different damages in the system. Some of the major damages are wear, fretting, corrosion, and teeth fatigue. Noise problems have also been observed in industrial settings. However, it is difficult to evaluate the contact behavior of spline couplings, and numerical simulations are often hampered by the use of specific codes and the boundary element method.
The failure of a spline gear coupling was caused by fatigue, and the fracture initiated at the bottom corner radius of the keyway. The keyway and splines had been overloaded beyond their yield strength, and significant yielding was observed in the spline gear teeth. A fracture ring of non-standard alloy steel exhibited a sharp corner radius, which was a significant stress raiser.
Several components were studied to determine their life span. These components include the spline shaft, the sealing bolt, and the graphite ring. Each of these components has its own set of design parameters. However, there are similarities in the distributions of these components. Wear and fatigue failure of spline couplings can be attributed to a combination of the 3 factors. A failure mode is often defined as a non-linear distribution of stresses and strains.

China supplier 10mxtl Never Stuck Al-Ti Alloy Drive Hydraulic Torque Wrench Tools for Petrochemical Industry Sales by Manufacturer   near me manufacturer China supplier 10mxtl Never Stuck Al-Ti Alloy Drive Hydraulic Torque Wrench Tools for Petrochemical Industry Sales by Manufacturer   near me manufacturer

China wholesaler Hydraulic NBR Rubber Oil Cap Seal Power Steering Drive Shaft Oil Seal near me factory

Product Description

01. Product Description

Product Description
Products Name Rubber O-ring & Oil sealing & Gasket
Products category rubber molded product
Material EPDM,NR,SBR,Nitrile, Silicone, Fluorosilicone, Neoprene, Urethane(PU), Polyacrylate(ACM), Ethylene Acrylic(AEM),  HNBR, Butyl(IIR), plastic like material (TPE, PU, NBR, silicone, NBR+TPE etc)
Size All size and thickness available.
Shape capable of all shapes as per drawing
Color Natural,black, Pantone code or RAL code, or as per client’s samples or requirements
Hardness 20°~90° Shore A, usually 30°~80° Shore A.
Surface finishing Texture (VDI/MT standard, or made to client’s sample), polished (high polish, mirror polish), smooth, painting, powder coating, printing, electroplating etc.
Drawing 2D or 3D draiwng in any image/picture format is OK
Free sample Yes
OEM/OEM Yes
Application Household, electronics, for vehicles like GM, Ford, Renault, Honda. Machinery, hospital, petrochemical, Military and Aerospace etc.
Market Europe, North America, Oceania
Quality certification ISO 90001:2008, TS16949, FDA, REACH, ROHS, SGS
QC Every order production will get more than 10 times regular check and 5 fives times random check by our professional QC. Or by Third party appointed by customer
 
Mold Molding Process Injection molding, mold processing, extrusion
Mould type processing mold, injection mold, extrusionmold
Machines 350T vacuum pressing machine and other pressing machine at 300T,250T and so on
Tooling equipment Rubber tension tester, Rubber vulcanization instrument, Durometer, calipers, ageing oven
Cavity 1~400 cavities
Mould Life 300,000~1,00,000 times
 
Production Production capacity finish each mold of product in 3 minutes and working on 3 shifts within 24 hours
Mold lead time 15~35 days
Sample lead time 3~5 days
Production time usually 15~30 days, should be confirmed before order
Loading port HangZhou, ZheJiang , HangZhou or as required

02. Company Profile

HangZhou Brother Rubber company was established in 1996 year, Located in HangZhou,China. We are an OEM/ODM professional manufacturer focused on solutions of rubber and plastic products. It represents high quality and is backed up by our team of quality assurance experts and our ISO 9001 and TS 16949 certifications. Its plant occupies over 2500 square meters of land.

Our main customers come from Europe,America and Oceanica, Example: UK, USA, Spain, Denmark,Germany, Australia, Finland .

Our strengths are our ability to respond quickly and efficiently to customer needs, excellent quality standards, and top notch follow-up service. Our strong engineering team supports our ability to provide excellent quality and on-time delivery. Our reputation is based on good credit, quality and service which is highly appreciated by customers in European and North American market. With mature and stable management team, advanced equipment and leading technology, experienced marketing team, a good reputation among our customers, the Group is making every effort to create the new brand of rubber, plastic products, metal products, mold processing in the world.

“leadship through quality and service, To create value for customers is creating a future for ourselves” as our motto. Welcome overseas friends to visit our company. Looking forward to your support more!

Office:
Our sale office is located in HangZhou city downtown, ZheJiang Province, China. It is in 2~3 hours drive distance to both our factory and airport or sea port in HangZhou. It is also convenient to meet customers from different countries.

Products and materials:
Our company is engaged in manufacture Rubber and plastic parts. The main products include molded rubber parts, Extrusion silicone tube/strip, silicone sponge tube, Injection plastic parts, Extrusion plastic parts, Rubber sponge parts, PVC dipping.

We make these parts according to the drawings or samples from customers with various shape,dimension and color , Example rubber rings, bellows, seals,hose,plug,bumper and so on, The main rubber raw material is EPDM,NR,SBR,Nitrile, Silicone, Fluorosilicone, Viton(FKM), Neoprene, Urethane(PU), Polyacrylate(ACM), Ethylene Acrylic(AEM), HNBR, Butyl(IIR) with 30~90 Shore A hardness. The main plastic raw material is PP, PA, PE, POM, PC, PVC, PS, PVC, TPE, TPR, TPU ,Santoprene. Especially we have advantage in rubber seals and auto rubber parts, We have produced many parts for some automotive enterprise like,Rover,BMW, Opel, GM, Ford, Renault, Honda.

Profound experience:
Our engineers and QC experts are engaged in rubber plastic industry over 23 years. Our core management team has rich experience and deep understanding of rubber and plastic development.

Production capacity:
Factory is working 24 hours by 3 shifts every day, It takes only 3 minutes to finish 1 mold of products. (If 1 mold has 50 cavities, then we can produce 50PCS of products within 3 minutes). Production machines including 350T vacuum pressing machine, 300T pressing machine, 250T machines and more others.

Quality control and test:
It has more than 10 times of quality check for every order, beginning from raw material check to package check. Every production line has at least 2 QC staff for random check and regular check. Test: manufactory testing machine includes rubber tension tester, rubber vulcanization instrument, durometer, calipers, ageing oven for Density test, Elongation at break, Bonding strength, Pulling force test, twisting force test, Rergarding other test like anti-high/low temperature which will be tested by Third Party Testing Center as customer required.

Sale service:
Every salesman should be in service after strictly trained with productions knowledge and customer-service requirements. Be skilled in exporting business procedure and English communication.

 

Worm Shafts and Gearboxes

If you have a gearbox, you may be wondering what the best Worm Shaft is for your application. There are several things to consider, including the Concave shape, Number of threads, and Lubrication. This article will explain each factor and help you choose the right Worm Shaft for your gearbox. There are many options available on the market, so don’t hesitate to shop around. If you are new to the world of gearboxes, read on to learn more about this popular type of gearbox.
worm shaft

Concave shape

The geometry of a worm gear varies considerably depending on its manufacturer and its intended use. Early worms had a basic profile that resembled a screw thread and could be chased on a lathe. Later, tools with a straight sided g-angle were developed to produce threads that were parallel to the worm’s axis. Grinding was also developed to improve the finish of worm threads and minimize distortions that occur with hardening.
To select a worm with the proper geometry, the diameter of the worm gear must be in the same unit as the worm’s shaft. Once the basic profile of the worm gear is determined, the worm gear teeth can be specified. The calculation also involves an angle for the worm shaft to prevent it from overheating. The angle of the worm shaft should be as close to the vertical axis as possible.
Double-enveloping worm gears, on the other hand, do not have a throat around the worm. They are helical gears with a straight worm shaft. Since the teeth of the worm are in contact with each other, they produce significant friction. Unlike double-enveloping worm gears, non-throated worm gears are more compact and can handle smaller loads. They are also easy to manufacture.
The worm gears of different manufacturers offer many advantages. For instance, worm gears are 1 of the most efficient ways to increase torque, while lower-quality materials like bronze are difficult to lubricate. Worm gears also have a low failure rate because they allow for considerable leeway in the design process. Despite the differences between the 2 standards, the overall performance of a worm gear system is the same.
The cone-shaped worm is another type. This is a technological scheme that combines a straight worm shaft with a concave arc. The concave arc is also a useful utility model. Worms with this shape have more than 3 contacts at the same time, which means they can reduce a large diameter without excessive wear. It is also a relatively low-cost model.
worm shaft

Thread pattern

A good worm gear requires a perfect thread pattern. There are a few key parameters that determine how good a thread pattern is. Firstly, the threading pattern must be ACME-threaded. If this is not possible, the thread must be made with straight sides. Then, the linear pitch of the “worm” must be the same as the circular pitch of the corresponding worm wheel. In simple terms, this means the pitch of the “worm” is the same as the circular pitch of the worm wheel. A quick-change gearbox is usually used with this type of worm gear. Alternatively, lead-screw change gears are used instead of a quick-change gear box. The pitch of a worm gear equals the helix angle of a screw.
A worm gear’s axial pitch must match the circular pitch of a gear with a higher axial pitch. The circular pitch is the distance between the points of teeth on the worm, while the axial pitch is the distance between the worm’s teeth. Another factor is the worm’s lead angle. The angle between the pitch cylinder and worm shaft is called its lead angle, and the higher the lead angle, the greater the efficiency of a gear.
Worm gear tooth geometry varies depending on the manufacturer and intended use. In early worms, threading resembled the thread on a screw, and was easily chased using a lathe. Later, grinding improved worm thread finishes and minimized distortions from hardening. As a result, today, most worm gears have a thread pattern corresponding to their size. When selecting a worm gear, make sure to check for the number of threads before purchasing it.
A worm gear’s threading is crucial in its operation. Worm teeth are typically cylindrical, and are arranged in a pattern similar to screw or nut threads. Worm teeth are often formed on an axis of perpendicular compared to their parallel counterparts. Because of this, they have greater torque than their spur gear counterparts. Moreover, the gearing has a low output speed and high torque.

Number of threads

Different types of worm gears use different numbers of threads on their planetary gears. A single threaded worm gear should not be used with a double-threaded worm. A single-threaded worm gear should be used with a single-threaded worm. Single-threaded worms are more effective for speed reduction than double-threaded ones.
The number of threads on a worm’s shaft is a ratio that compares the pitch diameter and number of teeth. In general, worms have 1,2,4 threads, but some have three, five, or six. Counting thread starts can help you determine the number of threads on a worm. A single-threaded worm has fewer threads than a multiple-threaded worm, but a multi-threaded worm will have more threads than a mono-threaded planetary gear.
To measure the number of threads on a worm shaft, a small fixture with 2 ground faces is used. The worm must be removed from its housing so that the finished thread area can be inspected. After identifying the number of threads, simple measurements of the worm’s outside diameter and thread depth are taken. Once the worm has been accounted for, a cast of the tooth space is made using epoxy material. The casting is moulded between the 2 tooth flanks. The V-block fixture rests against the outside diameter of the worm.
The circular pitch of a worm and its axial pitch must match the circular pitch of a larger gear. The axial pitch of a worm is the distance between the points of the teeth on a worm’s pitch diameter. The lead of a thread is the distance a thread travels in 1 revolution. The lead angle is the tangent to the helix of a thread on a cylinder.
The worm gear’s speed transmission ratio is based on the number of threads. A worm gear with a high ratio can be easily reduced in 1 step by using a set of worm gears. However, a multi-thread worm will have more than 2 threads. The worm gear is also more efficient than single-threaded gears. And a worm gear with a high ratio will allow the motor to be used in a variety of applications.
worm shaft

Lubrication

The lubrication of a worm gear is particularly challenging, due to its friction and high sliding contact force. Fortunately, there are several options for lubricants, such as compounded oils. Compounded oils are mineral-based lubricants formulated with 10 percent or more fatty acid, rust and oxidation inhibitors, and other additives. This combination results in improved lubricity, reduced friction, and lower sliding wear.
When choosing a lubricant for a worm shaft, make sure the product’s viscosity is right for the type of gearing used. A low viscosity will make the gearbox difficult to actuate and rotate. Worm gears also undergo a greater sliding motion than rolling motion, so grease must be able to migrate evenly throughout the gearbox. Repeated sliding motions will push the grease away from the contact zone.
Another consideration is the backlash of the gears. Worm gears have high gear ratios, sometimes 300:1. This is important for power applications, but is at the same time inefficient. Worm gears can generate heat during the sliding motion, so a high-quality lubricant is essential. This type of lubricant will reduce heat and ensure optimal performance. The following tips will help you choose the right lubricant for your worm gear.
In low-speed applications, a grease lubricant may be sufficient. In higher-speed applications, it’s best to apply a synthetic lubricant to prevent premature failure and tooth wear. In both cases, lubricant choice depends on the tangential and rotational speed. It is important to follow manufacturer’s guidelines regarding the choice of lubricant. But remember that lubricant choice is not an easy task.

China wholesaler Hydraulic NBR Rubber Oil Cap Seal Power Steering Drive Shaft Oil Seal   near me factory China wholesaler Hydraulic NBR Rubber Oil Cap Seal Power Steering Drive Shaft Oil Seal   near me factory

China Good quality 15mxtl 700 Bar Square Drive Hydraulic Torque Wrenches with 360 Degree Reaction Arm and 140000nm Torque Value near me supplier

Product Description

MXTL Series-Drive Torque Wrench

  MXTL Series-Drive Torque Wrench
* With the first induction locking structure, it can automatically realize self-locking and release, cancel the manual release trigger, perfectly solve the problem of bolt backout and jamming.
* Electroless nickel plating, laser cladding process, strengthen the strength of the cylinder, extend the life.
* Aviation Al-Ti alloy and integrated design ensure its wide applicability.
* The maximum working pressure is 70MPa.Drive by advanced precision ratchet. The output torque repeat ability up to ±3% .
* The 360º×180º rotating oil connection has no limitation in used space.
* The trigger button can place the 360º fine-tuning reaction arm on any fulcrum.
* Direct push drive shaft make the tightening and dismounting states easy to be switched.
* The Lock drive shaft can be customized according to customer’s requirement.
* Torque from 185Nm to 150000Nm have 12 models for your choice, more complete specifications, more bolt coverage.

 

Product Features:

 

Type Selection Table of MXTL Series-Drive Hydraulic Wrench:
 
Model 1MXTL 3MXTL 5MXTL 10MXTL 15MXTL 20MXTL 25MXTL 35MXTL 45MXTL 50MXTL 95MXTL
Torque 185 436 779 1502 2071 2617 3493 4963 5912 7032 14085
( Nm) 1852 4364 7789 15571 2571 26171 34928 49627 59123 7571 140848
Weight(Kg) 2.7 4.8 8.8 14.5 19 25 37.5 44 63 89 155
L1 138 170 205 238 268 304 331 390 412 418 520
L2 194 251 290 351 390 442 483 558 570 596 758
L3 63 89 102 118 141 146 158 177 188 195 246
H1 50 70 80 102 112 120 138 150 163 166 210
H2 73 102 124 147 171 183 202 219 229 236 307
H3 96 122 147 177 208 226 250 282 288 300 415
H4 140 165 191 222 252 267 291 323 332 366 473
R1 26 34 39 49 56 60 66 77 80 82 115
R2 107 138 156 177 195 240 260 298 303 325 400
Square Drive 3/4′ 1′ 1-1/2′ 1-1/2′ 2-1/2′ 2-1/2′ 2-1/2′ 2-1/2′ 2-1/2′ 3′ 4′

How  to choose torque range:

How to Choose Hydraulic Wrench:

Bolt Pretightening Method:

Company Profile:

Testing Machine:

Packing:

With Aluminum Plastic Tool Box,Protected by Wooden Box. Transport By Truck, By Sea ,By Air or By Train.

FAQ:

1.QAre you the manufacturer or trading company?

A: We are the manufacturer.

2.Q:Where is your factory?

A: It’s located in HangZhou city ZheJiang Province.

3.Q:What are your main products?

A:Hydraulic torque wrench, bolt tensioner, hydraulic pump, air pump and customized products.

4.Q:What is the MOQ?

A:MOQ is 1pc.

5.Q:How can I get the price list?

A:Please send us email with your exact requirements, then you will receive our reply soon.

6.Q:Can I buy your products in our local market?

A:It depends, please contact sales representative to learn more details.

7.Q:How long is the delivery?

A:Usually we have enough stock, it depends on the actual order quantity.

8.Q:How is your package?

A:It’s different for different products. For wrench it’s double packing with Aluminium plastic carton inside and wooden box outside. For others we use wooden box only.

9.Q:What is your payment term?

A:Very flexible, TT, L/C, RMB are also acceptable.

Different parts of the drive shaft

The driveshaft is the flexible rod that transmits torque between the transmission and the differential. The term drive shaft may also refer to a cardan shaft, a transmission shaft or a propeller shaft. Parts of the drive shaft are varied and include:
The driveshaft is a flexible rod that transmits torque from the transmission to the differential

When the driveshaft in your car starts to fail, you should seek professional help as soon as possible to fix the problem. A damaged driveshaft can often be heard. This noise sounds like “tak tak” and is usually more pronounced during sharp turns. However, if you can’t hear the noise while driving, you can check the condition of the car yourself.
The drive shaft is an important part of the automobile transmission system. It transfers torque from the transmission to the differential, which then transfers it to the wheels. The system is complex, but still critical to the proper functioning of the car. It is the flexible rod that connects all other parts of the drivetrain. The driveshaft is the most important part of the drivetrain, and understanding its function will make it easier for you to properly maintain your car.
Driveshafts are used in different vehicles, including front-wheel drive, four-wheel drive, and front-engine rear-wheel drive. Drive shafts are also used in motorcycles, locomotives and ships. Common front-engine, rear-wheel drive vehicle configurations are shown below. The type of tube used depends on the size, speed and strength of the drive shaft.
The output shaft is also supported by the output link, which has 2 identical supports. The upper part of the drive module supports a large tapered roller bearing, while the opposite flange end is supported by a parallel roller bearing. This ensures that the torque transfer between the differentials is efficient. If you want to learn more about car differentials, read this article.
air-compressor

It is also known as cardan shaft, propeller shaft or drive shaft

A propshaft or propshaft is a mechanical component that transmits rotation or torque from an engine or transmission to the front or rear wheels of a vehicle. Because the axes are not directly connected to each other, it must allow relative motion. Because of its role in propelling the vehicle, it is important to understand the components of the driveshaft. Here are some common types.
Isokinetic Joint: This type of joint guarantees that the output speed is the same as the input speed. To achieve this, it must be mounted back-to-back on a plane that bisects the drive angle. Then mount the 2 gimbal joints back-to-back and adjust their relative positions so that the velocity changes at 1 joint are offset by the other joint.
Driveshaft: The driveshaft is the transverse shaft that transmits power to the front wheels. Driveshaft: The driveshaft connects the rear differential to the transmission. The shaft is part of a drive shaft assembly that includes a drive shaft, a slip joint, and a universal joint. This shaft provides rotational torque to the drive shaft.
Dual Cardan Joints: This type of driveshaft uses 2 cardan joints mounted back-to-back. The center yoke replaces the intermediate shaft. For the duplex universal joint to work properly, the angle between the input shaft and the output shaft must be equal. Once aligned, the 2 axes will operate as CV joints. An improved version of the dual gimbal is the Thompson coupling, which offers slightly more efficiency at the cost of added complexity.
air-compressor

It transmits torque at different angles between driveline components

A vehicle’s driveline consists of various components that transmit power from the engine to the wheels. This includes axles, propshafts, CV joints and differentials. Together, these components transmit torque at different angles between driveline components. A car’s powertrain can only function properly if all its components work in harmony. Without these components, power from the engine would stop at the transmission, which is not the case with a car.
The CV driveshaft design provides smoother operation at higher operating angles and extends differential and transfer case life. The assembly’s central pivot point intersects the joint angle and transmits smooth rotational power and surface speed through the drivetrain. In some cases, the C.V. “U” connector. Drive shafts are not the best choice because the joint angles of the “U” joints are often substantially unequal and can cause torsional vibration.
Driveshafts also have different names, including driveshafts. A car’s driveshaft transfers torque from the transmission to the differential, which is then distributed to other driveline components. A power take-off (PTO) shaft is similar to a prop shaft. They transmit mechanical power to connected components. They are critical to the performance of any car. If any of these components are damaged, the entire drivetrain will not function properly.
A car’s powertrain can be complex and difficult to maintain. Adding vibration to the drivetrain can cause premature wear and shorten overall life. This driveshaft tip focuses on driveshaft assembly, operation, and maintenance, and how to troubleshoot any problems that may arise. Adding proper solutions to pain points can extend the life of the driveshaft. If you’re in the market for a new or used car, be sure to read this article.

it consists of several parts

“It consists of several parts” is 1 of 7 small prints. This word consists of 10 letters and is 1 of the hardest words to say. However, it can be explained simply by comparing it to a cow’s kidney. The cocoa bean has several parts, and the inside of the cocoa bean before bursting has distinct lines. This article will discuss the different parts of the cocoa bean and provide a fun way to learn more about the word.
air-compressor

Replacement is expensive

Replacing a car’s driveshaft can be an expensive affair, and it’s not the only part that needs servicing. A damaged drive shaft can also cause other problems. This is why getting estimates from different repair shops is essential. Often, a simple repair is cheaper than replacing the entire unit. Listed below are some tips for saving money when replacing a driveshaft. Listed below are some of the costs associated with repairs:
First, learn how to determine if your vehicle needs a driveshaft replacement. Damaged driveshaft components can cause intermittent or lack of power. Additionally, improperly installed or assembled driveshaft components can cause problems with the daily operation of the car. Whenever you suspect that your car needs a driveshaft repair, seek professional advice. A professional mechanic will have the knowledge and experience needed to properly solve the problem.
Second, know which parts need servicing. Check the u-joint bushing. They should be free of crumbs and not cracked. Also, check the center support bearing. If this part is damaged, the entire drive shaft needs to be replaced. Finally, know which parts to replace. The maintenance cost of the drive shaft is significantly lower than the maintenance cost. Finally, determine if the repaired driveshaft is suitable for your vehicle.
If you suspect your driveshaft needs service, make an appointment with a repair shop as soon as possible. If you are experiencing vibration and rough riding, driveshaft repairs may be the best way to prevent costly repairs in the future. Also, if your car is experiencing unusual noise and vibration, a driveshaft repair may be a quick and easy solution. If you don’t know how to diagnose a problem with your car, you can take it to a mechanic for an appointment and a quote.

China Good quality 15mxtl 700 Bar Square Drive Hydraulic Torque Wrenches with 360 Degree Reaction Arm and 140000nm Torque Value   near me supplier China Good quality 15mxtl 700 Bar Square Drive Hydraulic Torque Wrenches with 360 Degree Reaction Arm and 140000nm Torque Value   near me supplier

China Good quality Hydraulic Drive Motor BMS Transmission Engines near me shop

Product Description

Hydraulic Drive Motor BMS Transmission Engines 

Hanjiu BMS= OMS=Eaton 2000 series=M+S MS

BMS hydraulic motor is 1 type of high torque Iow speed hydraulic motors, with high efficiency and long life. BM motor has a wide Speed range, high starting torque and rotating stable at high speed Compact and light, it can be connected to working machine directly, adapted to all kinds of Iow speed heavy load facilities.

 

 

 

Description:

 

BMS hydraulic motors can well replace OMS series motors from and 2K series motors from EATON.

The Options of BMS-OMS 2K series hydraulic motors: 

 

– Model – Disc valve, roll-gerotor;

 

– Flange and wheel mount;

 

– Shafts – straight, splined and tapered;

 

– Metric/UNC and BSPP ports;

 

-Side and rear ports

 

– Color-Blue, grey ,black ,yellow ;

 
 
Features:
 
1. Advanced design in disc distribution flow, which can provide improved performance at low speed.

2. The output shaft adapts in tapered roller bearings that permit high axial and radial forces. Can offer capacities of high pressure and high torque in the wide of applications.

3. Double-rolling bearing design, which permit higher radial loads.

 

4. Avariety of connection types of flange, output shaft and oil port.
 

Applications:
 

BMS hydraulic motors are widely applied in agriculture machinery, fishing machinery, plastic industry, mining, and construction machinery.

1. Agricultural: all combine harvesters, seeders, rotary tiller, mower, sprayer, feed mixers, ground drilling machine.

2. fishing with: hauling machine.

3. lndustry: winding machines, textile machines, printing presses, operating with a washing machine.

4. construction industry: rollers, cement mixers, cleaning cars.

 

 

Product features:
 

Type BMS
BMSE
80
BMS
BMSE
100
BMS
BMSE
125
BMS
BMSE
160
BMS
BMSE
200
BMS
BMSE
250
BMS
BMSE
315
BMS
BMSE
375
Geometric displacement
(cm3 /rev.)
80.6 100.8 125 157.2 200 252 314.5 370
Max. speed (rpm) cont. 800 748 600 470 375 300 240 200
int. 988 900 720 560 450 360 280 240
Max. torque (N·m) cont. 190 240 310 316 400 450 560 536
int. 240 300 370 430 466 540 658 645
peak 260 320 400 472 650 690 740 751
Max. output (kW) cont. 15.9 18.8 19.5 15.6 15.7 14.1 14.1 11.8
int. 20.1 23.5 23.2 21.2 18.3 17 18.9 17
Max. pressure drop (MPa) cont. 17.5 17.5 17.5 15 14 12.5 12 10
int. 21 21 21 21 16 16 14 12
peak 22.5 22.5 22.5 22.5 22.5 20 18.5 14
Max. flow (L/min) cont. 65 75 75 75 75 75 75 75
int. 80 90 90 90 90 90 90 90
Max. inlet pressure (MPa) cont. 25 25 25 25 25 25 25 25
int. 30 30 30 30 30 30 30 30
Weight (kg) 9.8 10 10.3 10.7 11.1 11.6 12.3 12.6

* Continuous pressure :Max. value of operating motor continuously.
* Intermittent pressure :Max. value of operating motor in 6 seconds per minute.
* CZPT pressure:Max. value of operating motor in 0.6 second per minute

 

Model Crossing:

 

HXIHU (WEST LAKE) DIS.U
HYDRAULIC
M+S
HYDRAULIC
EATON
CHAR LYNN
  ROSS
TRW
WHITE
CROSS
PARKER SAM
BREVINI
BOSCH
RECROTH
BMM MM MLHK J SERIES OMM       BGM MGX
BMP/BM1 MP HP H SERIES OMP DH MF MG WP RS TC TE TB BG MGP GXP
BMR/BM2 MR HR MLHRW,RW S,T SERIES W SERIES OMR DS OMEW MB WR RE TF BR MGR GMR
BMH/BM4 MH MLHH HW HWF   OMH ME RE TG    
BMS/BM5 MS MSY MLHS 2000 SERIES OMS ME RE TG HPR MGS GMS
BMT/BM6 MT MLHT MTM 6000 SERIES OMT TMT MJ     HT MGT,GMT
BMV MV MLHV 10000 SERIES OMV         MGV GMV
 

 

 

What benefit can i get?

 

If you are doing hydrualic business, you ae distributing hydraulic components, you can take this motor, add this motor into your catagories, this motor will help you to enlarge your market, If you sell $1,000,000.00 a year, you raise profit by at least 30%, that is $300,000.00.

  • Hanjiu BMSY-200-E4BD = CZPT Char lynn 2k series, from USA
  • Hanjiu BMSY-200-E4BD = OMS series, from Danmark
  • Hanjiu BMSY-200-E4BD = M+S MS series, from Bulgaria
  • we have strong ability to match OEM part no. and provide you.

APPLICATIONS:

  •  Agricultural planting,  
  •  Ground care, Sweeping and Mowing machinery,
  •  Construction,
  •  Forestry, 
  •  wood processing and cutting, 
  •  Farmland irrigation winch ,
  •  Winch Wood from deforestation, 
  •  Construction machinery and platform,
  •  Pilling machines, 
  •  Oceanographic research winch,
  •  Nautical equipment and winches for fishing boats, 
  •  Towing and mooring winches, and many more.

 

 
 

 

 

How to work with US

  • discuss your demand with us first
  • we help you to confirm the products
  • match with our models
  • discuss your demand quantity with us, this will help us to provide you our best offer
  • we make a deal on the offer
  • sign a contract
  • you pay deposit
  • we produce
  • you pay balance payment after order ready for shipping
  • dispatch order
  • Payment terms: 30% deposit, 70% balance should be paid before shipping
  • Shipping: by sea, by air, by train
  • Terms: FOB, CFR, CIF
  • Loading port: ZheJiang , HangZhou, ZheJiang , HangZhou, China

 

 

 

Our company:

 

 

Elephant Fluid Power has been engaged in the hydraulic business since the beginning of the 20th century. It has a history of nearly 20 years and has always been upholding the principles of “quality first”, “credit first” and “zero complaint”, and has become a new leader in the hydraulics industry. CZPT Fluid Power insists on good products, good service, and has been providing customers with better, more comprehensive hydraulic products, and constantly.

 

We are looking for good long business partner and friendship.

 

If you are interested in our products, please contact me, I will provide the best price support and quality service.
I believe we will establish a good and long-term cooperation.

 

 

 

 

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China Good quality Hydraulic Drive Motor BMS Transmission Engines   near me shop China Good quality Hydraulic Drive Motor BMS Transmission Engines   near me shop